Skip to content

Commit

Permalink
Merge branch 'main' into is-rezk-Unit
Browse files Browse the repository at this point in the history
  • Loading branch information
Emily Riehl authored Nov 9, 2023
2 parents 2bf8d8b + 97a439f commit 2e66ed8
Show file tree
Hide file tree
Showing 2 changed files with 302 additions and 51 deletions.
261 changes: 241 additions & 20 deletions src/simplicial-hott/04-right-orthogonal.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -337,17 +337,17 @@ extensionality.
( ϕ : ψ → TOPE )
( is-orth-ψ-ϕ : is-right-orthogonal-to-shape I ψ ϕ A' A α)
: is-right-orthogonal-to-shape
( J × I) ( \ (t,s) → χ t ∧ ψ s) ( \ (t,s) → χ t ∧ ϕ s) A' A α
( J × I) ( \ (t , s) → χ t ∧ ψ s) ( \ (t , s) → χ t ∧ ϕ s) A' A α
:=
\ ( σ' : ( (t,s) : J × I | χ t ∧ ϕ s) → A') →
( ( \ ( τ : ( (t,s) : J × I | χ t ∧ ψ s) → A[ϕ s ↦ α (σ' (t,s))])
\ ( σ' : ( (t , s) : J × I | χ t ∧ ϕ s) → A') →
( ( \ ( τ : ( (t , s) : J × I | χ t ∧ ψ s) → A[ϕ s ↦ α (σ' (t , s))])
( t, s) →
( first (first (is-orth-ψ-ϕ (\ s' → σ' (t, s'))))) ( \ s' → τ (t, s')) s
, \ ( τ' : ( (t,s) : J × I | χ t ∧ ψ s) → A' [ϕ s ↦ σ' (t,s)]) →
, \ ( τ' : ( (t , s) : J × I | χ t ∧ ψ s) → A' [ϕ s ↦ σ' (t , s)]) →
naiveextext
( J × I) ( \ (t,s) → χ t ∧ ψ s) ( \ (t,s) → χ t ∧ ϕ s)
( J × I) ( \ (t , s) → χ t ∧ ψ s) ( \ (t , s) → χ t ∧ ϕ s)
( \ _ → A')
( \ ( t,s) → σ' (t,s))
( \ ( t,s) → σ' (t , s))
( \ ( t,s) →
( first (first (is-orth-ψ-ϕ (\ s' → σ' (t, s')))))
( \ s' → α (τ' (t, s'))) s)
Expand All @@ -360,15 +360,15 @@ extensionality.
( ( second (first (is-orth-ψ-ϕ (\ s' → σ' (t, s')))))
( \ s' → τ' (t, s')))
( s)))
, ( \ ( τ : ( (t,s) : J × I | χ t ∧ ψ s) → A [ϕ s ↦ α (σ' (t,s))])
, ( \ ( τ : ( (t , s) : J × I | χ t ∧ ψ s) → A [ϕ s ↦ α (σ' (t , s))])
( t, s) →
( first (second (is-orth-ψ-ϕ (\ s' → σ' (t, s'))))) ( \ s' → τ (t, s')) s
, \ ( τ : ( (t,s) : J × I | χ t ∧ ψ s) → A [ϕ s ↦ α (σ' (t,s))]) →
, \ ( τ : ( (t , s) : J × I | χ t ∧ ψ s) → A [ϕ s ↦ α (σ' (t , s))]) →
naiveextext
( J × I) ( \ (t,s) → χ t ∧ ψ s) ( \ (t,s) → χ t ∧ ϕ s)
( J × I) ( \ (t , s) → χ t ∧ ψ s) ( \ (t , s) → χ t ∧ ϕ s)
( \ _ → A)
( \ (t,s) → α (σ' (t,s)))
( \ (t,s) →
( \ (t , s) → α (σ' (t , s)))
( \ (t , s) →
α ( ( first ( second ( is-orth-ψ-ϕ (\ s' → σ' (t, s')))))
( \ s' → τ (t, s')) s))
( τ)
Expand Down Expand Up @@ -443,17 +443,17 @@ stability under pushout products.
( ϕ : ψ → TOPE )
( is-orth-ψ-ϕ : is-right-orthogonal-to-shape I ψ ϕ A' A α)
: is-right-orthogonal-to-shape (J × I)
( \ (t,s) → χ t ∧ ψ s)
( \ (t,s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( \ (t , s) → χ t ∧ ψ s)
( \ (t , s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( A') ( A) ( α)
:=
is-right-orthogonal-to-shape-left-cancel A' A α (J × I)
( \ (t,s) → χ t ∧ ψ s)
( \ (t,s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( \ (t,s) → χ t ∧ ϕ s)
( \ (t , s) → χ t ∧ ψ s)
( \ (t , s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( \ (t , s) → χ t ∧ ϕ s)
( is-right-orthogonal-to-shape-pushout A' A α (J × I)
( \ (t,s) → ζ t ∧ ψ s)
( \ (t,s) → χ t ∧ ϕ s)
( \ (t , s) → ζ t ∧ ψ s)
( \ (t , s) → χ t ∧ ϕ s)
( is-right-orthogonal-to-shape-product A' A α J ( \ t → ζ t) I ψ ϕ
(is-orth-ψ-ϕ)))
( is-right-orthogonal-to-shape-product A' A α J χ I ψ ϕ
Expand All @@ -475,8 +475,8 @@ stability under pushout products.
( A') ( A) ( α)
:=
is-right-orthogonal-to-shape-transpose A' A α J I
( \ (t,s) → χ t ∧ ψ s)
( \ (t,s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( \ (t , s) → χ t ∧ ψ s)
( \ (t , s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( is-right-orthogonal-to-shape-pushout-product A' A α J χ ζ I ψ ϕ
( is-orth-ψ-ϕ))
```
Expand Down Expand Up @@ -1104,3 +1104,224 @@ every fiber of every map `α : A' → A` also has unique extensions.
( is-right-orthogonal-have-unique-extensions I ψ ϕ A' A
( has-ue-ψ-ϕ-A') ( has-ue-ψ-ϕ-A) ( α))
```

## Anodyne shape inclusions

Fix a shape inclusion `ϕ ⊂ ψ`. We say that another shape inclusion `χ ⊂ ζ` is
**anodyne for** `ϕ ⊂ ψ`, is every map that is right orthogonal to `ϕ ⊂ ψ` is
also right orthogonal to `χ ⊂ ζ`.

```rzk
#section anodyne
#variable I₀ : CUBE
#variable ψ₀ : I₀ → TOPE
#variable ϕ₀ : ψ₀ → TOPE
#def is-anodyne-for-shape
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
: U
:=
( ( A' : U) → (A : U) → (α : A' → A)
→ is-right-orthogonal-to-shape I₀ ψ₀ ϕ₀ A' A α
→ is-right-orthogonal-to-shape I ψ ϕ A' A α)
```

Of course every shape inclusion is anodyne for itself.

```rzk
#def is-anodyne-for-self
: is-anodyne-for-shape I₀ ψ₀ ϕ₀
:= \ _ _ _ is-orth₀ → is-orth₀
```

All the stability properties above can be seen as implications between
conditions of being anodyne.

```rzk
#def is-anodyne-comp-for-shape
( I : CUBE)
( ψ : I → TOPE)
( χ : ψ → TOPE)
( ϕ : χ → TOPE)
: is-anodyne-for-shape I ψ χ
→ is-anodyne-for-shape I (\ t → χ t) (\ t → ϕ t)
→ is-anodyne-for-shape I ψ (\ t → ϕ t)
:=
\ f g A' A α is-orth₀ →
( is-right-orthogonal-to-shape-comp A' A α I ψ χ ϕ
( f A' A α is-orth₀)
( g A' A α is-orth₀))
#def is-anodyne-left-cancel-for-shape
( I : CUBE)
( ψ : I → TOPE)
( χ : ψ → TOPE)
( ϕ : χ → TOPE)
: is-anodyne-for-shape I (\ t → χ t) (\ t → ϕ t)
→ is-anodyne-for-shape I ψ (\ t → ϕ t)
→ is-anodyne-for-shape I ψ χ
:=
\ f g A' A α is-orth₀ →
( is-right-orthogonal-to-shape-left-cancel A' A α I ψ χ ϕ
( f A' A α is-orth₀)
( g A' A α is-orth₀))
#def is-anodyne-right-cancel-retract-for-shape
( I : CUBE)
( ψ : I → TOPE)
( χ : ψ → TOPE)
( ϕ : χ → TOPE)
: is-functorial-shape-retract I ψ χ
→ is-anodyne-for-shape I ψ (\ t → ϕ t)
→ is-anodyne-for-shape I (\ t → χ t) (\ t → ϕ t)
:=
\ r f A' A α is-orth₀ →
( is-right-orthogonal-to-shape-right-cancel-retract A' A α I ψ χ ϕ
( f A' A α is-orth₀) ( r))
#def is-anodyne-pushout-product-for-shape uses (naiveextext)
( J : CUBE)
( χ : J → TOPE)
( ζ : χ → TOPE)
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
: is-anodyne-for-shape I ψ ϕ
→ is-anodyne-for-shape (J × I)
( \ (t , s) → χ t ∧ ψ s)
( \ (t , s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
:=
\ f A' A α is-orth₀ →
( is-right-orthogonal-to-shape-pushout-product A' A α J χ ζ I ψ ϕ
( f A' A α is-orth₀))
#def is-anodyne-pushout-product-for-shape' uses (naiveextext)
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
( J : CUBE)
( χ : J → TOPE)
( ζ : χ → TOPE)
: is-anodyne-for-shape I ψ ϕ
→ is-anodyne-for-shape (I × J)
( \ (s , t) → ψ s ∧ χ t)
( \ (s , t) → (ϕ s ∧ χ t) ∨ (ψ s ∧ ζ t))
:=
\ f A' A α is-orth₀ →
( is-right-orthogonal-to-shape-pushout-product' A' A α I ψ ϕ J χ ζ
( f A' A α is-orth₀))
```

### Weak anodyne shape inclusions

Instead of an implication with respect to right orthogonality, we ask for a mere
implication with respect to types with unique extensions.

```rzk
#def is-weak-anodyne-for-shape
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
: U
:=
( (A : U)
→ has-unique-extensions I₀ ψ₀ ϕ₀ A
→ has-unique-extensions I ψ ϕ A)
```

Every anodyne shape inclusion is weak anodyne.

```rzk
#def is-weak-anodyne-is-anodyne-for-shape uses (weakextext)
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
: is-anodyne-for-shape I ψ ϕ
→ is-weak-anodyne-for-shape I ψ ϕ
:=
\ f A has-ue₀ →
( has-unique-extensions-is-right-orthogonal-terminal-map I ψ ϕ A
( f A Unit (terminal-map A)
( is-right-orthogonal-terminal-map-has-unique-extensions I₀ ψ₀ ϕ₀ A
has-ue₀)))
```

The inference rules that we saw above for anodyne shape inclusions all have an
analog fo weak anodyne shape inclusions.

```rzk
-- add them as you use them
#def is-weak-anodyne-for-self
: is-weak-anodyne-for-shape I₀ ψ₀ ϕ₀
:= \ _ has-ue₀ → has-ue₀
#def implication-has-unique-extension-implication-right-orthogonal
uses (weakextext)
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
( J : CUBE)
( χ : J → TOPE)
( ζ : χ → TOPE)
( impl
: (A' : U) → (A : U) → (α : A' → A)
→ is-right-orthogonal-to-shape I ψ ϕ A' A α
→ is-right-orthogonal-to-shape J χ ζ A' A α)
( A : U)
: has-unique-extensions I ψ ϕ A
→ has-unique-extensions J χ ζ A
:=
\ has-ue-ψ-ϕ →
has-unique-extensions-is-right-orthogonal-terminal-map J χ ζ A
( impl A Unit (terminal-map A)
( is-right-orthogonal-terminal-map-has-unique-extensions I ψ ϕ A
has-ue-ψ-ϕ))
#def is-weak-anodyne-pushout-product-for-shape
uses (naiveextext weakextext)
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
( J : CUBE)
( χ : J → TOPE)
( ζ : χ → TOPE)
: is-weak-anodyne-for-shape I ψ ϕ
→ is-weak-anodyne-for-shape (J × I)
( \ (t , s) → χ t ∧ ψ s)
( \ (t , s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
:=
\ f A has-ue₀ →
implication-has-unique-extension-implication-right-orthogonal I ψ ϕ
( J × I) ( \ (t , s) → χ t ∧ ψ s) ( \ (t , s) → (ζ t ∧ ψ s) ∨ (χ t ∧ ϕ s))
( \ A'₁ A₁ α₁ →
is-right-orthogonal-to-shape-pushout-product A'₁ A₁ α₁ J χ ζ I ψ ϕ)
( A) (f A has-ue₀)
#def is-weak-anodyne-pushout-product-for-shape'
uses (naiveextext weakextext)
( I : CUBE)
( ψ : I → TOPE )
( ϕ : ψ → TOPE )
( J : CUBE)
( χ : J → TOPE)
( ζ : χ → TOPE)
: is-weak-anodyne-for-shape I ψ ϕ
→ is-weak-anodyne-for-shape (I × J)
( \ (s , t) → ψ s ∧ χ t)
( \ (s , t) → (ϕ s ∧ χ t) ∨ (ψ s ∧ ζ t))
:=
\ f A has-ue₀ →
implication-has-unique-extension-implication-right-orthogonal I ψ ϕ
( I × J) ( \ (s , t) → ψ s ∧ χ t) ( \ (s , t) → (ϕ s ∧ χ t) ∨ (ψ s ∧ ζ t))
( \ A'₁ A₁ α₁ →
is-right-orthogonal-to-shape-pushout-product' A'₁ A₁ α₁ I ψ ϕ J χ ζ)
( A) (f A has-ue₀)
#end anodyne
```
Loading

0 comments on commit 2e66ed8

Please sign in to comment.