Skip to content

Commit

Permalink
Merge branch 'rzk-lang:main' into Contractible
Browse files Browse the repository at this point in the history
  • Loading branch information
thchatzidiamantis authored Jul 22, 2024
2 parents 327e2f8 + 352c301 commit 6bc3790
Showing 1 changed file with 263 additions and 18 deletions.
281 changes: 263 additions & 18 deletions src/simplicial-hott/08-covariant.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -467,6 +467,269 @@ Segal, then so is `Σ A, C`.
( is-naive-left-fibration-is-covariant A C is-covariant-C))
```

## Dependent composition

In a covariant family over a Segal type, we will define dependent composition of
arrows. We first apply the result that the total type is Segal as follows.

```rzk
#def is-contr-horn-ext-is-covariant-family-is-segal-base uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( a : (t : Λ) → A)
( c : (t : Λ) → C (a t))
: is-contr
( Σ ( f : ((t : Δ²) → A [Λ t ↦ a t]))
, ( ( t : Δ²) → C (f t) [Λ t ↦ c t]))
:=
is-contr-equiv-is-contr
( ( t : Δ²) → (Σ (x : A) , C x) [Λ t ↦ (a t , c t)])
( Σ ( f : ((t : Δ²) → A [Λ t ↦ a t]))
, ( ( t : Δ²) → C (f t) [Λ t ↦ c t]))
( axiom-choice
( 2 × 2)
( Δ²)
( \ t → Λ t)
( \ t → A)
( \ t → \ x → C x)
( a)
( c))
( has-unique-inner-extensions-is-segal
( Σ ( x : A) , C x)
( is-segal-total-type-covariant-family-is-segal-base
A C is-covariant-C is-segal-A)
( \ t → (a t , c t)))
#def equiv-comp-horn-ext-is-segal-base
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( a : (t : Λ) → A)
( c : (t : Λ) → C (a t))
: Equiv
( Σ ( f : ((t : Δ²) → A [Λ t ↦ a t]))
, ( ( t : Δ²) → C (f t) [Λ t ↦ c t]))
( ( t : Δ²)
→ C (witness-comp-is-segal A is-segal-A (a (0₂ , 0₂)) (a (1₂ , 0₂))
( a (1₂ , 1₂)) (\ s → a (s , 0₂)) (\ s → a (1₂ , s)) t) [Λ t ↦ c t])
:=
transport-equiv-center-fiber-total-type-is-contr-base
( ( t : Δ²) → A [Λ t ↦ a t])
( has-unique-inner-extensions-is-segal A is-segal-A a)
( \ f → ((t : Δ²) → C (f t) [Λ t ↦ c t]))
( witness-comp-is-segal A is-segal-A (a (0₂ , 0₂)) (a (1₂ , 0₂))
( a (1₂ , 1₂)) (\ s → a (s , 0₂)) (\ s → a (1₂ , s)))
#def is-contr-comp-horn-ext-is-covariant-family-is-segal-base uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( a : (t : Λ) → A)
( c : (t : Λ) → C (a t))
: is-contr
( ( t : Δ²)
→ C (witness-comp-is-segal A is-segal-A (a (0₂ , 0₂)) (a (1₂ , 0₂))
( a (1₂ , 1₂)) (\ s → a (s , 0₂)) (\ s → a (1₂ , s)) t) [Λ t ↦ c t])
:=
is-contr-equiv-is-contr
( Σ ( f : ((t : Δ²) → A [Λ t ↦ a t]))
, ( ( t : Δ²) → C (f t) [Λ t ↦ c t]))
( ( t : Δ²)
→ C (witness-comp-is-segal A is-segal-A (a (0₂ , 0₂)) (a (1₂ , 0₂))
( a (1₂ , 1₂)) (\ s → a (s , 0₂)) (\ s → a (1₂ , s)) t) [Λ t ↦ c t])
( equiv-comp-horn-ext-is-segal-base A is-segal-A C a c)
( is-contr-horn-ext-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C a c)
#def dhorn
( A : U)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
( C : A → U)
( u : C x)
( v : C y)
( w : C z)
( ff : dhom A x y f C u v)
( gg : dhom A y z g C v w)
: ( ( t : Λ) → C (horn A x y z f g t))
:=
\ (t , s) →
recOR
( s ≡ 0₂ ↦ ff t
, t ≡ 1₂ ↦ gg s)
#def dcompositions-are-dhorn-fillings
( A : U)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
( h : hom A x z)
( α : hom2 A x y z f g h)
( C : A → U)
( u : C x)
( v : C y)
( w : C z)
( ff : dhom A x y f C u v)
( gg : dhom A y z g C v w)
: Equiv
( Σ ( hh : dhom A x z h C u w)
, ( dhom2 A x y z f g h α C u v w ff gg hh))
( ( t : Δ²) → C (α t) [Λ t ↦ dhorn A x y z f g C u v w ff gg t])
:=
( \ (hh , H) t → H t
, ( ( \ k → (\ t → k (t , t) , \ (t , s) → k (t , s))
, \ (hh , H) → refl)
, ( \ k → (\ t → k (t , t) , \ (t , s) → k (t , s))
, \ (hh , H) → refl)))
```

We now prove contractibility of a type that will be used to define dependent
composition.

```rzk title="RS17, Remark 8.11"
#def is-contr-dhom2-comp-is-covariant-family-is-segal-base uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
( u : C x)
( v : C y)
( w : C z)
( ff : dhom A x y f C u v)
( gg : dhom A y z g C v w)
: is-contr
( Σ ( hh : dhom A x z (comp-is-segal A is-segal-A x y z f g) C u w)
, dhom2 A x y z f g (comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g) C u v w ff gg hh)
:=
is-contr-equiv-is-contr'
( Σ ( hh : dhom A x z (comp-is-segal A is-segal-A x y z f g) C u w)
, dhom2 A x y z f g (comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g) C u v w ff gg hh)
( ( t : Δ²) → C ((witness-comp-is-segal A is-segal-A x y z f g) t)
[Λ t ↦ dhorn A x y z f g C u v w ff gg t])
( dcompositions-are-dhorn-fillings A x y z f g
( comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g)
C u v w ff gg)
( is-contr-comp-horn-ext-is-covariant-family-is-segal-base
( A)
( is-segal-A)
( C)
( is-covariant-C)
( horn A x y z f g)
( dhorn A x y z f g C u v w ff gg))
#def dcomp-is-covariant-family-is-segal-base uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
( u : C x)
( v : C y)
( w : C z)
( ff : dhom A x y f C u v)
( gg : dhom A y z g C v w)
: dhom A x z (comp-is-segal A is-segal-A x y z f g) C u w
:=
( first
( first
( is-contr-dhom2-comp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg)))
#def witness-dcomp-is-covariant-family-is-segal-base uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
( u : C x)
( v : C y)
( w : C z)
( ff : dhom A x y f C u v)
( gg : dhom A y z g C v w)
: dhom2 A x y z f g (comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g) C u v w ff gg
( dcomp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg)
:=
( second
( first
( is-contr-dhom2-comp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg)))
```

Dependent composition is unique.

```rzk
#def uniqueness-dcomp-is-covariant-family-is-segal-base uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
( u : C x)
( v : C y)
( w : C z)
( ff : dhom A x y f C u v)
( gg : dhom A y z g C v w)
( hh : dhom A x z (comp-is-segal A is-segal-A x y z f g) C u w)
( H : dhom2 A x y z f g (comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g) C u v w ff gg hh)
: ( dcomp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg) = hh
:=
first-path-Σ
( dhom A x z (comp-is-segal A is-segal-A x y z f g) C u w)
( \ hh →
dhom2 A x y z f g (comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g) C u v w ff gg hh)
( ( dcomp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg)
, ( witness-dcomp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg))
( hh , H)
( homotopy-contraction
( ( Σ ( hh : dhom A x z (comp-is-segal A is-segal-A x y z f g) C u w)
, dhom2 A x y z f g (comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g) C u v w ff gg hh))
( is-contr-dhom2-comp-is-covariant-family-is-segal-base
A is-segal-A C is-covariant-C x y z f g u v w ff gg)
( hh , H))
```

## Covariant lifts, transport, and uniqueness

In a covariant family C over a base type A , a term u : C x may be transported
along an arrow f : hom A x y to give a term in C y.

```rzk title="RS17, covariant transport from beginning of Section 8.2"
#def covariant-transport
( A : U)
( x y : A)
( f : hom A x y)
( C : A → U)
( is-covariant-C : is-covariant A C)
( u : C x)
: C y
:=
first (center-contraction (dhom-from A x y f C u) (is-covariant-C x y f u))
```

## Representable covariant families

If `A` is a Segal type and `a : A` is any term, then `hom A a` defines a
Expand Down Expand Up @@ -1056,24 +1319,6 @@ types as follows.
( representable-dhom-from-cofibration-composition A a x y f u)
```

## Covariant lifts, transport, and uniqueness

In a covariant family C over a base type A , a term u : C x may be transported
along an arrow f : hom A x y to give a term in C y.

```rzk title="RS17, covariant transport from beginning of Section 8.2"
#def covariant-transport
( A : U)
( x y : A)
( f : hom A x y)
( C : A → U)
( is-covariant-C : is-covariant A C)
( u : C x)
: C y
:=
first (center-contraction (dhom-from A x y f C u) (is-covariant-C x y f u))
```

For example, if `A` is a Segal type and `a : A`, the family `C x := hom A a x`
is covariant as shown above. Transport of an `e : C x` along an arrow
`f : hom A x y` just yields composition of `f` with `e`.
Expand Down

0 comments on commit 6bc3790

Please sign in to comment.