In this project, I apply supervised learning techniques on data collected for the U.S. census to help a (fictitious) charity organization identify people most likely to donate to their cause. I first explore the data to learn how the census data is recorded. Next, I apply a series of transformations and preprocessing techniques to manipulate the data into a workable format. I then evaluate several supervised learners on the data, and consider which is best suited for the solution. Afterwards, I optimize the selected model and present it as your solution.
This project was designed to acquaint me with the many supervised learning algorithms available in sklearn, and to also provide for a method of evaluating just how each model works and performs on a certain type of data. It is important in machine learning to understand exactly when and where a certain algorithm should be used, and when one should be avoided.
Things I learned completing this project:
- How to identify when preprocessing is needed, and how to apply it.
- How to establish a benchmark for a solution to the problem.
- What each of several supervised learning algorithms accomplishes given a specific dataset.
- How to investigate whether a candidate solution model is adequate for the problem.
This project uses Python 2.7 and the following software and Python libraries:
You will also need to have software installed to run and execute a Jupyter Notebook
If you do not have Python installed yet, it is highly recommended that you install the Anaconda distribution of Python, which already has the above packages and more included. Make sure that you select the Python 2.7 installer and not the Python 3.x installer.
For this assignment, you can find the finding_donors
folder containing the necessary project files on the Machine Learning projects GitHub, under the projects
folder. You may download all of the files for projects we'll use in this Nanodegree program directly from this repo. Please make sure that you use the most recent version of project files when completing a project!
This project contains three files:
finding_donors.ipynb
: This is the main file where you will be performing your work on the project.census.csv
: The project dataset. You'll load this data in the notebook.visuals.py
: A Python file containing visualization code that is run behind-the-scenes. Do not modify
In the Terminal or Command Prompt, navigate to the folder containing the project files, and then use the command jupyter notebook finding_donors.ipynb
to open up a browser window or tab to work with your notebook. Alternatively, you can use the command jupyter notebook
or ipython notebook
and navigate to the notebook file in the browser window that opens. Follow the instructions in the notebook and answer each question presented to successfully complete the project.
Template code is provided in the finding_donors.ipynb
notebook file. You will also be required to use the included visuals.py
Python file and the census.csv
dataset file to complete your work. While some code has already been implemented to get you started, you will need to implement additional functionality when requested to successfully complete the project. Note that the code included in visuals.py
is meant to be used out-of-the-box and not intended for students to manipulate. If you are interested in how the visualizations are created in the notebook, please feel free to explore this Python file.
In a terminal or command window, navigate to the top-level project directory finding_donors/
(that contains this README) and run one of the following commands:
ipython notebook finding_donors.ipynb
or
jupyter notebook finding_donors.ipynb
This will open the iPython Notebook software and project file in your browser.
The modified census dataset consists of approximately 32,000 data points, with each datapoint having 13 features. This dataset is a modified version of the dataset published in the paper "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", by Ron Kohavi. You may find this paper online, with the original dataset hosted on UCI.
Features
age
: Ageworkclass
: Working Class (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)education_level
: Level of Education (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool)education-num
: Number of educational years completedmarital-status
: Marital status (Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)occupation
: Work Occupation (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)relationship
: Relationship Status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)race
: Race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)sex
: Sex (Female, Male)capital-gain
: Monetary Capital Gainscapital-loss
: Monetary Capital Losseshours-per-week
: Average Hours Per Week Workednative-country
: Native Country (United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands)
Target Variable
income
: Income Class (<=50K, >50K)