Skip to content

Commit

Permalink
resolve conflict
Browse files Browse the repository at this point in the history
  • Loading branch information
samwaseda committed Nov 2, 2023
2 parents ddc6efa + 488c7e0 commit 3bd5d5e
Show file tree
Hide file tree
Showing 4 changed files with 60 additions and 26 deletions.
1 change: 1 addition & 0 deletions .ci_support/environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@ channels:
dependencies:
- numpy
- cython
- scipy
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ neighbors = structure.get_neighbors()
first_shell_tensor = neighbors.get_shell_matrix()[0]

mc = MC(len(structure))
mc.set_heisenberg_coeff(J * first_shell_tensor.toarray())
mc.set_heisenberg_coeff(J * first_shell_tensor)

mc.run(temperature=300, number_of_iterations=1000)
```
Expand Down
60 changes: 38 additions & 22 deletions mamonca/mc.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ cdef class MC:
>>> first_shell_tensor = neighbors.get_shell_matrix()[0]
>>>
>>> mc = MC(len(structure))
>>> mc.set_heisenberg_coeff(J*first_shell_tensor.toarray())
>>> mc.set_heisenberg_coeff(J*first_shell_tensor)
>>>
>>> mc.run(temperature=300, number_of_iterations=1000)
Expand Down Expand Up @@ -71,33 +71,49 @@ cdef class MC:
def set_heisenberg_coeff(self, coeff, i=None, j=None, deg=1, index=0):
"""
Args:
coeff (float/list/ndarray): Heisenberg coefficient. If a single number is given,
the same parameter is applied to all the pairs defined in me and neigh.
Instead of giving me and neigh, you can also give a n_atom x n_atom tensor.
i (list/ndarray): list of indices i (s. definition in the comment)
j (list/ndarray): list of indices j (s. definition in the comment)
coeff (float/list/ndarray/scipy.sparse): Heisenberg coefficient.
If a single number is given, the same parameter is applied
to all the pairs defined in me and neigh. Instead of
giving me and neigh, you can also give a n_atom x n_atom
tensor.
i (list/ndarray): list of indices i (s. def in the comment)
j (list/ndarray): list of indices j (s. def in the comment)
deg (int): polynomial degree
index (int): potential index for thermodynamic integration (0 or 1; choose 0 if
not thermodynamic integration)
index (int): potential index for thermodynamic integration
(0 or 1; choose 0 if not thermodynamic integration)
Comment:
Heisenberg term is given by: -sum_ij coeff_ij*(m_i*m_j)^deg. Beware of the
negative sign.
Heisenberg term is given by: -sum_ij coeff_ij*(m_i*m_j)^deg.
Beware of the negative sign.
"""
if i is None and j is None:
n = self.c_mc.get_number_of_atoms()
if np.array(coeff).shape!=(n, n):
raise ValueError(
'If i and j are not specified, coeff has to be a 2d tensor with the length '
+ 'equal to the number of atoms in each direction.'
)
i,j = np.where(coeff!=0)
coeff = coeff[coeff!=0]
coeff = np.array([coeff]).flatten()
i = np.array(i).flatten()
j = np.array(j).flatten()
if len(coeff)==1:
if isinstance(coeff, (np.ndarray, list)):
if np.array(coeff).shape!=(n, n):
raise ValueError(
"If i and j are not specified, coeff has to be a 2d"
" tensor with the length equal to the number of atoms in"
" each direction."
)
i,j = np.where(coeff != 0)
coeff = coeff[coeff != 0]
else:
if hasattr(coeff, "tocoo"):
coeff = coeff.tocoo()
try:
i = coeff.row
j = coeff.col
coeff = coeff.data
except AttributeError:
raise ValueError(
"Input can be a sparse matrix or a numpy array of"
f" shape ({n}, {n}) or you must specify i, j and coeff"
)
coeff = np.asarray([coeff]).flatten()
i = np.asarray(i).flatten()
j = np.asarray(j).flatten()
if len(coeff) == 1:
coeff = np.tile(coeff, len(i))
if len(coeff)!=len(i) or len(i)!=len(j):
if not len(coeff) == len(i) == len(j):
raise ValueError('Length of vectors not the same')
self.c_mc.set_heisenberg_coeff(coeff, i, j, deg, index)

Expand Down
23 changes: 20 additions & 3 deletions tests/test_heisenberg.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,18 +2,35 @@
import numpy as np
import unittest
import os
from scipy.sparse import coo_matrix


class TestFull(unittest.TestCase):

@classmethod
def setUpClass(cls):
cls.file_location = os.path.dirname(os.path.abspath(__file__))
ij = np.loadtxt(os.path.join(cls.file_location, "neighbors.txt"))
cls.mc = MC(np.max(ij) + 1)
cls.mc.set_heisenberg_coeff(0.1, *ij)
cls.ij = np.loadtxt(
os.path.join(cls.file_location, "neighbors.txt")
).astype(int)
cls.n = np.max(cls.ij) + 1
cls.mc = MC(cls.n)
cls.mc.set_heisenberg_coeff(0.1, *cls.ij)
cls.mc.run(temperature=300, number_of_iterations=1000)

def test_coo_mat(self):
data = 0.1 * np.ones(self.ij.shape[1])
mat = coo_matrix(
(data, (self.ij[0], self.ij[1])),
shape=(self.n, self.n),
)
for i in range(2):
mc = MC(self.n)
mc.set_heisenberg_coeff(mat)
mc.run(100, number_of_iterations=1000)
self.assertLess(mc.get_energy(), 0)
mat = mat + mat # transforms to csr

def test_acceptance_ratio(self):
self.assertGreater(self.mc.get_acceptance_ratio(), 0)
self.assertLess(self.mc.get_acceptance_ratio(), 1)
Expand Down

0 comments on commit 3bd5d5e

Please sign in to comment.