Python interface to CAISO's OASIS API.
The following steps should be followed to set up a development environment.
$ python -m venv <env_name>
$ source <env_name>/bin/activate
(<env_name>)$ pip install -r requirements.txt
(<env_name>)$ pre-commit install
The following step should be followed if installing this package in another project.
$ pip install git+ssh://[email protected]/MCE-Clean-Energy/pyoasis.git
The following functions aid in downloading single XML files as provided by CAISO. There are some limitations in the number of days that can be requested in a single query, which vary by report. To download a larger date range, see DOWNLOAD MULTIPLE REPORTS.
In [1]: from pyoasis.utils import create_oasis_url, download_files, get_report_params
...: from datetime import datetime, timedelta
...: end = datetime.utcnow()
...: start = end - timedelta(days=1)
In [2]: get_report_params('PRC_LMP')
Out[2]:
{'oasis.caiso.com': {'/oasisapi/SingleZip': {'PRC_LMP': [{'enddatetime': '20130920T07:00-0000',
'grp_type': 'ALL_APNODES',
'market_run_id': 'DAM',
'queryname': 'PRC_LMP',
'startdatetime': '20130919T07:00- 0000',
'version': '1'},
{'enddatetime': '20130920T07:00-0000',
'market_run_id': 'DAM',
'node': 'LAPLMG1_7_B2',
'queryname': 'PRC_LMP',
'startdatetime': '20130919T07:00- 0000',
'version': '1'}]}}}
In [3]: url = create_oasis_url(report_name='PRC_LMP', start=start, end=end, query_params={'grp_type': 'ALL_APNODES', 'market_run_id': 'DAM', 'version': 1})
In [4]: url
Out[4]: 'http://oasis.caiso.com/oasisapi/SingleZip?grp_type=ALL_APNODES&market_run_id=DAM&version=1&startdatetime=20200602T18:44-0700&enddatetime=20200603T18:44-0700&queryname=PRC_LMP'
In [5]: download_files(url, 'downloads')
Out[5]: ['./downloads/20200602_20200602_PRC_LMP_DAM_20200603_11_45_34_v1.xml']
A class called OASISReport
can be used to read the XML reports provided by CAISO in a pandas DataFrame format.
In [1]: from pyoasis.report import OASISReport
In [2]: oasis_report = OASISReport('downloads/20200602_20200602_PRC_LMP_DAM_20200603_11_45_34_v1.xml')
In [3]: oasis_report.report_dataframe
Out[3]:
DATA_ITEM RESOURCE_NAME OPR_DATE INTERVAL_NUM INTERVAL_START_GMT INTERVAL_END_GMT VALUE
0 LMP_PRC AFPR_1_TOT_GEN-APND 2020-06-02 21 2020-06-03T03:00:00-00:00 2020-06-03T04:00:00-00:00 58.79329
1 LMP_PRC AFPR_1_TOT_GEN-APND 2020-06-02 20 2020-06-03T02:00:00-00:00 2020-06-03T03:00:00-00:00 89.80261
2 LMP_PRC AFPR_1_TOT_GEN-APND 2020-06-02 24 2020-06-03T06:00:00-00:00 2020-06-03T07:00:00-00:00 27.96422
3 LMP_PRC AFPR_1_TOT_GEN-APND 2020-06-02 22 2020-06-03T04:00:00-00:00 2020-06-03T05:00:00-00:00 37.03459
4 LMP_PRC AFPR_1_TOT_GEN-APND 2020-06-02 23 2020-06-03T05:00:00-00:00 2020-06-03T06:00:00-00:00 29.89008
... ... ... ... ... ... ... ...
190459 LMP_LOSS_PRC YALE_7_UNITS-APND 2020-06-03 6 2020-06-03T12:00:00-00:00 2020-06-03T13:00:00-00:00 -0.93879
190460 LMP_LOSS_PRC YALE_7_UNITS-APND 2020-06-03 5 2020-06-03T11:00:00-00:00 2020-06-03T12:00:00-00:00 -0.75582
190461 LMP_LOSS_PRC YALE_7_UNITS-APND 2020-06-03 1 2020-06-03T07:00:00-00:00 2020-06-03T08:00:00-00:00 -1.12311
190462 LMP_LOSS_PRC YALE_7_UNITS-APND 2020-06-03 16 2020-06-03T22:00:00-00:00 2020-06-03T23:00:00-00:00 -3.32574
190463 LMP_LOSS_PRC YALE_7_UNITS-APND 2020-06-03 19 2020-06-04T01:00:00-00:00 2020-06-04T02:00:00-00:00 -7.39762
[190464 rows x 7 columns]
In [4]: oasis_report.get_unique_values("RESOURCE_NAME") Out[4]:
array(['AFPR_1_TOT_GEN-APND', 'AGRICO_6_PL3N5-APND', 'AGRICO_7_UNIT-APND',
..., 'WP_2_WPCC5MSG-APND', 'WSH_1_WESTSIDEHYD-APND',
'YALE_7_UNITS-APND'], dtype=object)
In [5]: oasis_report.filter_report_dict("RESOURCE_NAME", ["TH_NP15_GEN-APND"])
In [6]: oasis_report.report_dataframe.sort_values(by=["DATA_ITEM", "INTERVAL_START_GMT"])
Out[6]:
DATA_ITEM RESOURCE_NAME OPR_DATE INTERVAL_NUM INTERVAL_START_GMT INTERVAL_END_GMT VALUE
9 LMP_CONG_PRC TH_NP15_GEN-APND 2020-06-02 20 2020-06-03T02:00:00-00:00 2020-06-03T03:00:00-00:00 0
5 LMP_CONG_PRC TH_NP15_GEN-APND 2020-06-02 21 2020-06-03T03:00:00-00:00 2020-06-03T04:00:00-00:00 0
6 LMP_CONG_PRC TH_NP15_GEN-APND 2020-06-02 22 2020-06-03T04:00:00-00:00 2020-06-03T05:00:00-00:00 0
7 LMP_CONG_PRC TH_NP15_GEN-APND 2020-06-02 23 2020-06-03T05:00:00-00:00 2020-06-03T06:00:00-00:00 0
8 LMP_CONG_PRC TH_NP15_GEN-APND 2020-06-02 24 2020-06-03T06:00:00-00:00 2020-06-03T07:00:00-00:00 0
.. ... ... ... ... ... ... ...
33 LMP_PRC TH_NP15_GEN-APND 2020-06-03 15 2020-06-03T21:00:00-00:00 2020-06-03T22:00:00-00:00 38.5
34 LMP_PRC TH_NP15_GEN-APND 2020-06-03 16 2020-06-03T22:00:00-00:00 2020-06-03T23:00:00-00:00 43.92021
22 LMP_PRC TH_NP15_GEN-APND 2020-06-03 17 2020-06-03T23:00:00-00:00 2020-06-04T00:00:00-00:00 48.90323
24 LMP_PRC TH_NP15_GEN-APND 2020-06-03 18 2020-06-04T00:00:00-00:00 2020-06-04T01:00:00-00:00 64.53166
21 LMP_PRC TH_NP15_GEN-APND 2020-06-03 19 2020-06-04T01:00:00-00:00 2020-06-04T02:00:00-00:00 99.90272
[96 rows x 7 columns]
The following function will download multiple reports, stitch them together into a single report, and save it as a CSV file.
NOTE: There are some issues when querying the OASIS API repeatedly, which can cause this function to fail. Some endpoints allow specifying a node
, which allows OASIS to return smaller reports that are filtered on the node. Another mechanism to address this is to decrease the chunk_size
(fewer days in a single request) or increase the max_attempts
(more attempts to download each constituent file).
In [1]: from datetime import datetime, timedelta
In [2]: import pandas as pd
In [3]: from pyoasis.repeat_calls import fetch_report
In [4]: fetch_report(report_name="PRC_LMP", query_params={'node': "TH_NP15_GEN-APND", 'market_run_id': 'DAM', 'version': 1}, start=datetime(2019, 1, 1), end_limit=datetime(2019, 2, 1), chunk_size=timedelta(days=15), max_attempts=10, destination_directory="caiso_downloads")
Out[4]: '.../caiso_downloads/20190101-0000_20190201-0000_PRC_LMP.csv'
In [5]: pd.read_csv(".../caiso_downloads/20190101-0000_20190201-0000_PRC_LMP.csv")
Out[5]:
Unnamed: 0 DATA_ITEM RESOURCE_NAME OPR_DATE INTERVAL_NUM INTERVAL_START_GMT INTERVAL_END_GMT VALUE
0 27 LMP_CONG_PRC TH_NP15_GEN-APND 2019-01-01 1 2019-01-01 08:00:00+00:00 2019-01-01 09:00:00+00:00 0.00000
1 28 LMP_CONG_PRC TH_NP15_GEN-APND 2019-01-01 2 2019-01-01 09:00:00+00:00 2019-01-01 10:00:00+00:00 0.00000
2 34 LMP_CONG_PRC TH_NP15_GEN-APND 2019-01-01 3 2019-01-01 10:00:00+00:00 2019-01-01 11:00:00+00:00 0.00000
3 35 LMP_CONG_PRC TH_NP15_GEN-APND 2019-01-01 4 2019-01-01 11:00:00+00:00 2019-01-01 12:00:00+00:00 0.00000
4 38 LMP_CONG_PRC TH_NP15_GEN-APND 2019-01-01 5 2019-01-01 12:00:00+00:00 2019-01-01 13:00:00+00:00 0.00000
... ... ... ... ... ... ... ... ...
2971 10 LMP_PRC TH_NP15_GEN-APND 2019-01-31 20 2019-02-01 03:00:00+00:00 2019-02-01 04:00:00+00:00 53.29588
2972 1 LMP_PRC TH_NP15_GEN-APND 2019-01-31 21 2019-02-01 04:00:00+00:00 2019-02-01 05:00:00+00:00 48.09075
2973 11 LMP_PRC TH_NP15_GEN-APND 2019-01-31 22 2019-02-01 05:00:00+00:00 2019-02-01 06:00:00+00:00 43.19151
2974 15 LMP_PRC TH_NP15_GEN-APND 2019-01-31 23 2019-02-01 06:00:00+00:00 2019-02-01 07:00:00+00:00 41.65750
2975 21 LMP_PRC TH_NP15_GEN-APND 2019-01-31 24 2019-02-01 07:00:00+00:00 2019-02-01 08:00:00+00:00 39.41805
[2976 rows x 8 columns]