Skip to content

Commit

Permalink
fix(kzg10): fix some typos
Browse files Browse the repository at this point in the history
  • Loading branch information
gy001 committed Dec 16, 2024
1 parent 7baa633 commit 0944a77
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 8 deletions.
8 changes: 4 additions & 4 deletions ph23/kzg_hiding.md
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ Therefore, we also need to add another different blinding factor to $[q(\tau)]_1

$$
\begin{aligned}
\mathsf{KZG.Commit}(q(X), {\color{green}s}) & = q_0 \cdot [1]_1 + q_1 \cdot [\tau]_1 + \cdots + q_d \cdot [\tau^d]_1 + {\color{green}s} \cdot {\color{red}[\gamma]_1} \\
\mathsf{KZG.Commit}(q(X), {\color{green}s}) & = q_0 \cdot [1]_1 + q_1 \cdot [\tau]_1 + \cdots + q_d \cdot [\tau^{d-1}]_1 + {\color{green}s} \cdot {\color{red}[\gamma]_1} \\
& = [q(\tau) + {\color{green}s}\cdot{\color{red}\gamma}]_1
\end{aligned}
$$
Expand Down Expand Up @@ -239,13 +239,13 @@ Where the red parts are provided by the Prover, and the blue parts are public va
To prove the Degree Bound of $f(X)$, we also need to add a Blinding Factor to the polynomial $\hat{f}(X)$, then calculate its commitment as the Degree Bound proof of $f(X)$:

$$
\mathsf{cm}(\hat{f}) = [\tau^{D-d}\cdot \hat{f}(\tau)]_1 + {\color{red}\eta}\cdot[\gamma]_1
\mathsf{cm}(\hat{f}) = [\tau^{D-d}\cdot f(\tau)]_1 + {\color{red}\eta}\cdot[\gamma]_1
$$

At the same time, an additional element $C'\in\mathbb{G}_1$ is needed for balancing,
At the same time, an additional element $E \in\mathbb{G}_1$ is needed for balancing,

$$
C' = \rho\cdot[\tau^{D-d}]_1 - {\color{red}\eta}\cdot[1]_1
E = \rho\cdot[\tau^{D-d}]_1 - {\color{red}\eta}\cdot[1]_1
$$

This way, the Verifier can verify the Degree Bound proof of $f(X)$ through the following equation:
Expand Down
8 changes: 4 additions & 4 deletions ph23/kzg_hiding.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ $$

$$
\begin{aligned}
\mathsf{KZG.Commit}(q(X), {\color{green}s}) & = q_0 \cdot [1]_1 + q_1 \cdot [\tau]_1 + \cdots + q_d \cdot [\tau^d]_1 + {\color{green}s} \cdot {\color{red}[\gamma]_1} \\
\mathsf{KZG.Commit}(q(X), {\color{green}s}) & = q_0 \cdot [1]_1 + q_1 \cdot [\tau]_1 + \cdots + q_d \cdot [\tau^{d-1}]_1 + {\color{green}s} \cdot {\color{red}[\gamma]_1} \\
& = [q(\tau) + {\color{green}s}\cdot{\color{red}\gamma}]_1
\end{aligned}
$$
Expand Down Expand Up @@ -239,13 +239,13 @@ $$
为了证明 $f(X)$ 的 Degree Bound,我们需要给多项式 $\hat{f}(X)$ 也加上 Blinding Factor,然后计算其承诺,作为 $f(X)$ 的 Degree Bound 证明:

$$
\mathsf{cm}(\hat{f}) = [\tau^{D-d}\cdot \hat{f}(\tau)]_1 + {\color{red}\eta}\cdot[\gamma]_1
\mathsf{cm}(\hat{f}) = [\tau^{D-d}\cdot f(\tau)]_1 + {\color{red}\eta}\cdot[\gamma]_1
$$

同时还要附加上一个用来配平的 元素 $C'\in\mathbb{G}_1$,
同时还要附加上一个用来配平的元素 $E\in\mathbb{G}_1$,

$$
C' = \rho\cdot[\tau^{D-d}]_1 - {\color{red}\eta}\cdot[1]_1
E = \rho\cdot[\tau^{D-d}]_1 - {\color{red}\eta}\cdot[1]_1
$$

这样 Verifier 可以用过下面的等式来验证 $f(X)$ 的 Degree Bound 证明:
Expand Down

0 comments on commit 0944a77

Please sign in to comment.