-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Example] ggml: add gemma support (#98)
Signed-off-by: hydai <[email protected]>
- Loading branch information
Showing
3 changed files
with
197 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
[package] | ||
name = "wasmedge-ggml-gemma" | ||
version = "0.1.0" | ||
edition = "2021" | ||
|
||
[dependencies] | ||
serde_json = "1.0" | ||
wasi-nn = { git = "https://github.com/second-state/wasmedge-wasi-nn", branch = "ggml" } |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
use serde_json::Value; | ||
use serde_json::json; | ||
use std::env; | ||
use std::io; | ||
use wasi_nn::{self, GraphExecutionContext}; | ||
|
||
fn read_input() -> String { | ||
loop { | ||
let mut answer = String::new(); | ||
io::stdin() | ||
.read_line(&mut answer) | ||
.expect("Failed to read line"); | ||
if !answer.is_empty() && answer != "\n" && answer != "\r\n" { | ||
return answer.trim().to_string(); | ||
} | ||
} | ||
} | ||
|
||
fn get_options_from_env() -> Value { | ||
let mut options = json!({}); | ||
if let Ok(val) = env::var("enable_log") { | ||
options["enable-log"] = serde_json::from_str(val.as_str()).unwrap() | ||
} | ||
if let Ok(val) = env::var("ctx_size") { | ||
options["ctx-size"] = serde_json::from_str(val.as_str()).unwrap() | ||
} | ||
if let Ok(val) = env::var("n_gpu_layers") { | ||
options["n-gpu-layers"] = serde_json::from_str(val.as_str()).unwrap() | ||
} | ||
if let Ok(val) = env::var("stream_output") { | ||
options["stream-stdout"] = serde_json::from_str(val.as_str()).unwrap() | ||
} | ||
|
||
options | ||
} | ||
|
||
fn set_data_to_context( | ||
context: &mut GraphExecutionContext, | ||
data: Vec<u8>, | ||
) -> Result<(), wasi_nn::Error> { | ||
context.set_input(0, wasi_nn::TensorType::U8, &[1], &data) | ||
} | ||
|
||
#[allow(dead_code)] | ||
fn set_metadata_to_context( | ||
context: &mut GraphExecutionContext, | ||
data: Vec<u8>, | ||
) -> Result<(), wasi_nn::Error> { | ||
context.set_input(1, wasi_nn::TensorType::U8, &[1], &data) | ||
} | ||
|
||
fn get_data_from_context(context: &GraphExecutionContext, index: usize) -> String { | ||
// Preserve for 4096 tokens with average token length 6 | ||
const MAX_OUTPUT_BUFFER_SIZE: usize = 4096 * 6; | ||
let mut output_buffer = vec![0u8; MAX_OUTPUT_BUFFER_SIZE]; | ||
let mut output_size = context | ||
.get_output(index, &mut output_buffer) | ||
.expect("Failed to get output"); | ||
output_size = std::cmp::min(MAX_OUTPUT_BUFFER_SIZE, output_size); | ||
|
||
return String::from_utf8_lossy(&output_buffer[..output_size]).to_string(); | ||
} | ||
|
||
fn get_output_from_context(context: &GraphExecutionContext) -> String { | ||
get_data_from_context(context, 0) | ||
} | ||
|
||
#[allow(dead_code)] | ||
fn get_metadata_from_context(context: &GraphExecutionContext) -> Value { | ||
serde_json::from_str(&get_data_from_context(context, 1)) | ||
.expect("Failed to get metadata") | ||
} | ||
|
||
fn main() { | ||
let args: Vec<String> = env::args().collect(); | ||
let model_name: &str = &args[1]; | ||
|
||
// Set options for the graph. Check our README for more details: | ||
// https://github.com/second-state/WasmEdge-WASINN-examples/tree/master/wasmedge-ggml#parameters | ||
let options = get_options_from_env(); | ||
|
||
// Create graph and initialize context. | ||
let graph = | ||
wasi_nn::GraphBuilder::new(wasi_nn::GraphEncoding::Ggml, wasi_nn::ExecutionTarget::AUTO) | ||
.config(serde_json::to_string(&options).expect("Failed to serialize options")) | ||
.build_from_cache(model_name) | ||
.expect("Failed to build graph"); | ||
let mut context = graph | ||
.init_execution_context() | ||
.expect("Failed to init context"); | ||
|
||
// We also support setting the options via input tensor with index 1. | ||
// Uncomment the line below to run the example, Check our README for more details. | ||
// set_metadata_to_context( | ||
// &mut context, | ||
// serde_json::to_string(&options) | ||
// .expect("Failed to serialize options") | ||
// .as_bytes() | ||
// .to_vec(), | ||
// ) | ||
// .expect("Failed to set metadata"); | ||
|
||
// If there is a third argument, use it as the prompt and enter non-interactive mode. | ||
// This is mainly for the CI workflow. | ||
if args.len() >= 3 { | ||
let prompt = &args[2]; | ||
println!("Prompt:\n{}", prompt); | ||
let tensor_data = prompt.as_bytes().to_vec(); | ||
context | ||
.set_input(0, wasi_nn::TensorType::U8, &[1], &tensor_data) | ||
.expect("Failed to set input"); | ||
println!("Response:"); | ||
context.compute().expect("Failed to compute"); | ||
let output = get_output_from_context(&context); | ||
println!("{}", output.trim()); | ||
std::process::exit(0); | ||
} | ||
|
||
let mut saved_prompt = String::new(); | ||
|
||
loop { | ||
println!("Question:"); | ||
let input = read_input(); | ||
if saved_prompt.is_empty() { | ||
saved_prompt = format!( | ||
"<start_of_turn>user {} <end_of_turn><start_of_turn>model", | ||
input | ||
); | ||
} else { | ||
saved_prompt = format!("{} <start_of_turn>user {} <end_of_turn><start_of_turn>model", saved_prompt, input); | ||
} | ||
|
||
// Set prompt to the input tensor. | ||
set_data_to_context(&mut context, saved_prompt.as_bytes().to_vec()) | ||
.expect("Failed to set input"); | ||
|
||
// Get the number of input tokens and llama.cpp versions. | ||
// let input_metadata = get_metadata_from_context(&context); | ||
// println!("[INFO] llama_commit: {}", input_metadata["llama_commit"]); | ||
// println!( | ||
// "[INFO] llama_build_number: {}", | ||
// input_metadata["llama_build_number"] | ||
// ); | ||
// println!( | ||
// "[INFO] Number of input tokens: {}", | ||
// input_metadata["input_tokens"] | ||
// ); | ||
|
||
// Execute the inference. | ||
let mut reset_prompt = false; | ||
match context.compute() { | ||
Ok(_) => (), | ||
Err(wasi_nn::Error::BackendError(wasi_nn::BackendError::ContextFull)) => { | ||
println!("\n[INFO] Context full, we'll reset the context and continue."); | ||
reset_prompt = true; | ||
} | ||
Err(wasi_nn::Error::BackendError(wasi_nn::BackendError::PromptTooLong)) => { | ||
println!("\n[INFO] Prompt too long, we'll reset the context and continue."); | ||
reset_prompt = true; | ||
} | ||
Err(err) => { | ||
println!("\n[ERROR] {}", err); | ||
} | ||
} | ||
|
||
// Retrieve the output. | ||
let mut output = get_output_from_context(&context); | ||
println!("Answer:\n{}", output.trim()); | ||
|
||
// Update the saved prompt. | ||
if reset_prompt { | ||
saved_prompt.clear(); | ||
} else { | ||
output = output.trim().to_string(); | ||
saved_prompt = format!("{} {}", saved_prompt, output); | ||
} | ||
|
||
// Retrieve the output metadata. | ||
// let metadata = get_metadata_from_context(&context); | ||
// println!( | ||
// "[INFO] Number of input tokens: {}", | ||
// metadata["input_tokens"] | ||
// ); | ||
// println!( | ||
// "[INFO] Number of output tokens: {}", | ||
// metadata["output_tokens"] | ||
// ); | ||
} | ||
} |
Binary file not shown.