Skip to content
/ learnR Public
forked from jwjw/learnR

A tutorial for R programming language at basic and advanced levels, and its application in data transformation, statistical computing, time series analysis, data mining, financial computing, etc.

License

Notifications You must be signed in to change notification settings

shelDev/learnR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

learnR

Introduction

learnR is a tutorial for R programming language from basic to advanced levels. It includes basic concepts, motivations, principles and their application in data transformation, data analysis, data mining, statistical computing, financial computing, etc.

Prerequesites

  1. R
  2. Rtools
  3. Rstudio

Contents

A: Basic R Programming

  1. Introduction to R programming language
  2. RStudio IDE
  3. Basic objects
    • Vector (Numeric, Integer, Complex, Logical, Character)
    • Matrix
    • Array
    • List
    • Data frame
    • Function
    • Formula
  4. Basic expressions
    • Assignment expression (<-, <<-)
    • Conditional expression (if else)
    • Loop expression (for, while)
  5. Basic functions
    • Environment functions
    • Package functions
    • Object functions
    • Logical functions
    • Character functions
    • Math functions
    • Statistical functions
    • Data manipulation (data read/write, transformation)
    • Higher-order functions
    • Optimization functions
    • Anonymous functions
    • Meta-functions
    • Plot functions
  6. Debugging in RStudio
  7. Essential statistics
    • Preparing data
    • Descriptive statistics
    • Linear regression
    • Statistical hypothesis testing
    • Model analysis
    • Time series model fit
  8. Essential data mining
    • Using models
    • Cross validation
  9. Design patterns

B: Advanced R Programming

  1. R language mechanism
    • Lazy evaluation
    • Dynamic scoping
    • Object searching
    • Memory management
    • ...
    • Functions
    • Environment
    • Expression
    • Call
  2. Data structures
    • S3 object
    • S4 object
  3. Database
    • SQL
    • Read/Write Excel Workbook via {RODBC}
    • Read/Write SQLite database via {RSQLite}
    • Use SQL to query data frames
  4. Parallel computing
    • {parallel}
    • {parallelMap}
    • {doParallel} + {foreach}
    • {doParallel} + {plyr}
  5. Functional programming
    • Anonymous functions
    • Closures
    • Higher order functions
  6. Profiling
    • Computing time tracking
    • Memory use tracking

C: Popular packages

  1. Popular packages
  2. Read/Write JSON ({jsonlite})
  3. Process strings ({stringr})
  4. Transform data frame between long and wide formats ({reshape2})
  5. Iterate over vector, list, and data frame ({plyr})
  6. Handy data frame transformation ({dplyr})
  7. Nonlinear root finding ({rootSolve})
  8. Nonlinear Optimization ({Rsolnp})
  9. Integrate R with C++ ({Rcpp})
  10. R Markdown Documenting ({rmarkdown})

D: Data Visualization

  1. Basic plots
    • Scatter/line/bar/pie charts
    • Composing plots
    • Partitioning plots
    • Graphics devices
    • Interactive graphics
  2. {ggplot2}

E1: Exercises

E2: Appendix

About

A tutorial for R programming language at basic and advanced levels, and its application in data transformation, statistical computing, time series analysis, data mining, financial computing, etc.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%