Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: change README verbiage #16

Merged
merged 1 commit into from
Oct 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
148 changes: 45 additions & 103 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# memonto 🧠

<p align="center">
<img src="https://memonto.s3.amazonaws.com/memonto-readme-banner-v2.png" alt="logo"/>
<img src="https://memonto.s3.amazonaws.com/memonto-readme-banner-3.png" alt="logo"/>
</p>

<p align="center">
Expand All @@ -16,37 +16,14 @@
</a>
</p>

`memonto` (_memory + ontology_) adds memory to AI agents based on your custom defined ontology.
- Define your own [RDF](https://www.w3.org/RDF/) ontology with [`rdflib`](https://github.com/RDFLib/rdflib).
- `memonto` automatically extracts information that maps onto that ontology into a memory graph (triple store).
- Memory data can be queried directly with `SPARQL` returning a list of matching triples (subject > predicate > object).
- Memories can also be contextually summarized with the addition of a vector store.
`memonto` (_memory + ontology_) augments AI agents with long-term memory through a knowledge graph. The knowledge graph enables agents to remember past interactions, understand relationships between data, and improve contextual awareness.
- **Define** the ontology for the information you want memonto to retain.
- **Extract** that information from any unstructured text to a knowledge graph.
- **Query** your knowledge graph for intelligent summaries or raw data for RAG.

```
┌─────────────────────────────┐ ┌──────────────────────┐ ┌─────────────────────────────────┐
│ Message │ │ LLM │ │ Memory Graph │
│ │ │ │ │ ... │
│ {Otto von Bismarck was a │ │ │ │ │ │
│ Prussian statesman and │ │ │ │┌───────────────▼───────────────┐│
│ diplomat who oversaw the │ │ [Otto von Bismarck] │ ││ Otto von Bismarck ││
│ unification of Germany...} ┼─► │ │└────────┬──────┬───────────────┘│
│ │ │ is a [Person] who │ │ │ │ │
└─────────────────────────────┘ │ ┼─► livesAt│ │partOf │
┌─────────────────────────────┐ │ lives in a [Place] │ │ │ │ │
│ Ontology │ │ │ │┌────────▼┐┌────▼───────────────┐│
│ ┼─► called [Prussia] │ ││ Prussia ││ German Unification ││
│ ┌─────────────┐ │ │ │ │└─┬─────┬─┘└──────┬─────┬───────┘│
│ │ Person │ │ │ and participated in │ │ │ │ │ │ │
│ └───┬─────┬───┘ │ │ │ │ ▼ ▼ ▼ ▼ │
│ │ │ │ │ an [Event] called │ │ ... ... ... ... │
│ livesAt│ │partOf │ │ │ └─────────────────┬───────────────┘
│ │ │ │ │ [German Unification] │ │
│ ┌─────────▼─┐ ┌─▼─────────┐ │ │ │ ┌─────────────────▼───────────────┐
│ │ Place │ │ Event │ │ │ │ │ │
│ └───────────┘ └───────────┘ │ │ │ │ SPARQL Queries / Memory Summary │
│ │ │ │ │ │
└─────────────────────────────┘ └──────────────────────┘ └─────────────────────────────────┘
```
<p align="center">
<img src="https://memonto.s3.amazonaws.com/memonto-explain-2.png" alt="explain"/>
</p>

## 🚀 Install
```sh
Expand All @@ -56,12 +33,12 @@ pip install memonto
## ⚙️ Configure
### Ephemeral Mode

Use `memonto` all in memory without any data stores.
Use `memonto` without any data stores.

> [!IMPORTANT]
> When in `ephemeral` mode, there can be performance issues if the memory data grows too large. This mode is recommended for smaller use cases.
> `ephemeral` mode is recommended for simpler/smaller use cases.

**Define ontology**
**Define RDF ontology**
```python
from memonto import Memonto
from rdflib import Graph, Namespace, RDF, RDFS
Expand Down Expand Up @@ -96,7 +73,10 @@ config = {
},
}
}
```

**Enable Ephemeral Mode**
```python
memonto = Memonto(
ontology=g,
namespaces={"hist": HIST},
Expand All @@ -107,18 +87,7 @@ memonto.configure(config)

### Triple Store Mode

A triple store enables the persistent storage of memory data. Currently supports Apache Jena Fuseki as a triple store. To configure a triple store, add `triple_store` to the top level of your `config` dictionary.

**Install Apache Jena Fuseki**
1. Download Apache Jena Fuseki [here](https://jena.apache.org/download/index.cgi#apache-jena-fuseki).
2. Unzip to desired folder.
```sh
tar -xzf apache-jena-fuseki-X.Y.Z.tar.gz
```
3. Run a local server.
```sh
./fuseki-server --port=8080
```
Enable triple store for persistent storage. To configure a triple store, add `triple_store` to the top level of your `config` dictionary.

**Configure Triple Store**
```python
Expand All @@ -132,9 +101,23 @@ config = {
}
```

**Install Apache Jena Fuseki**
1. Download Apache Jena Fuseki [here](https://jena.apache.org/download/index.cgi#apache-jena-fuseki).
2. Unzip to desired folder.
```sh
tar -xzf apache-jena-fuseki-X.Y.Z.tar.gz
```
3. Run a local server.
```sh
./fuseki-server --port=8080
```

### Triple + Vector Stores Mode

A vector store enables contextual retrieval of memory data, it must be used in conjunction with a triple store. Currently supports Chroma as a vector store. To configure a vector store, add `vector_store` to the top level of your `config` dictionary.
Enable vector store for contextual retrieval. To configure a vector store, add `vector_store` to the top level of your `config` dictionary.

> [!IMPORTANT]
> You must enable triple store in conjunction with vector store.

**Configure Local Vector Store**
```python
Expand All @@ -148,69 +131,18 @@ config = {
},
}
```
**Configure Remote Vector Store**
```python
config = {
"vector_store": {
"provider": "chroma",
"config": {
"mode": "remote",
"auth": "basic",
"host": "localhost",
"port": "8080"
"token": "bearer_token"
},
},
}
```
```python
config = {
"vector_store": {
"provider": "chroma",
"config": {
"mode": "remote",
"auth": "token",
"host": "localhost",
"port": "8080"
"username": "admin"
"passport": "admin1"
},
},
}
```

## 🧰 Usage
### RDF Namespaces

`memonto` supports RDF namespaces as well. Just pass in a dictionary with the namespace's name along with its `rdflib.Namespace` object.
```python
memonto = Memonto(
ontology=g,
namespaces={"hist": HIST},
)
```

### Memory ID

For when you want to associate an ontology and memories to an unique `id`.
```python
memonto = Memonto(
id="some_id_123",
ontology=g,
namespaces={"hist": HIST},
)
```

### Retain

Extract the relevant information from a message that maps onto your ontology. It will only extract data that matches onto an entity in your ontology.
Exatract information from text that maps onto your ontology. It will only extract data that matches onto an entity in your ontology.
```python
memonto.retain("Otto von Bismarck was a Prussian statesman and diplomat who oversaw the unification of Germany.")
```

### Recall

Get a summary of the currently stored memories. You can provide a `context` for `memonto` to only summarize the memories that are relevant to that `context`.
Get a summary of the current memories. You can provide a `context` for `memonto` to only summarize the memories that are relevant to that `context`.

> [!IMPORTANT]
> When in `ephemeral` mode, all memories will be returned even if a `context` is provided.
Expand All @@ -224,7 +156,7 @@ memonto.recall()

### Retrieve

Get the raw memory data that can be programatically accessed. Instead of a summary, get the actual stored data as a `list[dict]` that can then be manipulated in code.
Get raw knowledge graph data that can be programatically parsed or query for a summary that is relevant to a given context.
> [!IMPORTANT]
> When in `ephemeral` mode, raw queries are not supported.
```python
Expand All @@ -242,9 +174,19 @@ Forget about it.
memonto.forget()
```

### RDF Namespaces

`memonto` supports RDF namespaces as well. Just pass in a dictionary with the namespace's name along with its `rdflib.Namespace` object.
```python
memonto = Memonto(
ontology=g,
namespaces={"hist": HIST},
)
```

### Auto Expand Ontology

Enable `memonto` to automatically expand your ontology to cover new information. If `memonto` sees new information that **does not** fit onto your ontology, it will automatically add onto your ontology to cover that new information.
Enable `memonto` to automatically expand your ontology to cover new data and relations. If `memonto` sees new information that **does not** fit onto your ontology, it will automatically add onto your ontology to cover that new information.
```python
memonto = Memonto(
id="some_id_123",
Expand All @@ -265,7 +207,7 @@ async def main():
await memonto.aforget()
```

## 🔮 Current and Upcoming
## 🔮 Current and Upcoming Suport

| LLM | | Vector Store | |Triple Store | |
|-----------|-----|--------------|-----|-------------|-----|
Expand Down
Loading