-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
271 lines (221 loc) · 8.85 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import datetime as dt
import warnings
from pathlib import Path
import ffmpeg
import gdown
import gradio as gr
import IPython.display as ipd
import joblib as jl
import numpy as np
import soundfile as sf
import torch
import wget
from tqdm.auto import tqdm
from diff_ttsg.hifigan.config import v1
from diff_ttsg.hifigan.denoiser import Denoiser
from diff_ttsg.hifigan.env import AttrDict
from diff_ttsg.hifigan.models import Generator as HiFiGAN
from diff_ttsg.models.diff_ttsg import Diff_TTSG
from diff_ttsg.text import cmudict, sequence_to_text, text_to_sequence
from diff_ttsg.text.symbols import symbols
from diff_ttsg.utils.model import denormalize
from diff_ttsg.utils.utils import intersperse, plot_tensor
from pymo.preprocessing import MocapParameterizer
from pymo.viz_tools import render_mp4
from pymo.writers import BVHWriter
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## Modify the checkpoint locations incase of someother locations
DIFF_TTSG_CHECKPOINT = "diff_ttsg_checkpoint.ckpt"
DIFF_TTSG_URL = "https://github.com/shivammehta25/Diff-TTSG/releases/download/checkpoint/diff_ttsg_checkpoint.ckpt"
HIFIGAN_CHECKPOINT = "g_02500000"
HIFIGAN_URL = "https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link"
MOTION_PIPELINE = "diff_ttsg/resources/data_pipe.expmap_86.1328125fps.sav"
CMU_DICT_PATH = "diff_ttsg/resources/cmu_dictionary"
OUTPUT_FOLDER = "synth_output"
# Model loading tools
def load_model(checkpoint_path):
model = Diff_TTSG.load_from_checkpoint(checkpoint_path, map_location=device)
model.eval()
return model
# Vocoder loading tools
def load_vocoder(checkpoint_path):
h = AttrDict(v1)
hifigan = HiFiGAN(h).to(device)
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)['generator'])
_ = hifigan.eval()
hifigan.remove_weight_norm()
return hifigan
# Setup text preprocessing
cmu = cmudict.CMUDict(CMU_DICT_PATH)
def process_text(text: str):
x = torch.LongTensor(intersperse(text_to_sequence(text, dictionary=cmu), len(symbols))).to(device)[None]
x_lengths = torch.LongTensor([x.shape[-1]]).to(device)
x_phones = sequence_to_text(x.squeeze(0).tolist())
return {
'x_orig': text,
'x': x,
'x_lengths': x_lengths,
'x_phones': x_phones
}
# Setup motion visualisation
motion_pipeline = jl.load(MOTION_PIPELINE)
bvh_writer = BVHWriter()
mocap_params = MocapParameterizer("position")
## Load models
def assert_model_downloaded(checkpoint_path, url, use_wget=False):
if Path(checkpoint_path).exists():
return
print(f"[-] Model not found at {checkpoint_path}! Will download it")
if not use_wget:
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
else:
wget.download(url=url, out=checkpoint_path)
assert_model_downloaded(DIFF_TTSG_CHECKPOINT, DIFF_TTSG_URL, use_wget=True)
model = load_model(DIFF_TTSG_CHECKPOINT)
assert_model_downloaded(HIFIGAN_CHECKPOINT, HIFIGAN_URL)
vocoder = load_vocoder(HIFIGAN_CHECKPOINT)
denoiser = Denoiser(vocoder, mode='zeros')
# Synthesis functions
@torch.inference_mode()
def synthesise(text, mel_timestep, motion_timestep, length_scale, mel_temp, motion_temp):
## Number of timesteps to run the reverse denoising process
n_timesteps = {
'mel': mel_timestep,
'motion': motion_timestep,
}
## Sampling temperature
temperature = {
'mel': mel_temp,
'motion': motion_temp
}
text_processed = process_text(text)
t = dt.datetime.now()
output = model.synthesise(
text_processed['x'],
text_processed['x_lengths'],
n_timesteps=n_timesteps,
temperature=temperature,
stoc=False,
spk=None,
length_scale=length_scale
)
t = (dt.datetime.now() - t).total_seconds()
print(f'RTF: {t * 22050 / (output["mel"].shape[-1] * 256)}')
output.update(text_processed) # merge everything to one dict
return output
@torch.inference_mode()
def to_waveform(mel, vocoder):
audio = vocoder(mel).clamp(-1, 1)
audio = denoiser(audio.squeeze(0)).cpu().squeeze()
return audio
def to_bvh(motion):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return motion_pipeline.inverse_transform([motion.cpu().squeeze(0).T])
def save_to_folder(filename: str, output: dict, folder: str):
folder = Path(folder)
folder.mkdir(exist_ok=True, parents=True)
np.save(folder / f'{filename}', output['mel'].cpu().numpy())
sf.write(folder / f'{filename}.wav', output['waveform'], 22050, 'PCM_24')
with open(folder / f'{filename}.bvh', 'w') as f:
bvh_writer.write(output['bvh'], f)
def to_stick_video(filename, bvh, folder):
folder = Path(folder)
folder.mkdir(exist_ok=True, parents=True)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
X_pos = mocap_params.fit_transform([bvh])
print(f"rendering {filename} ...")
render_mp4(X_pos[0], folder / f'{filename}.mp4', axis_scale=200)
def combine_audio_video(filename: str, folder: str):
print("Combining audio and video")
folder = Path(folder)
folder.mkdir(exist_ok=True, parents=True)
input_video = ffmpeg.input(str(folder / f'{filename}.mp4'))
input_audio = ffmpeg.input(str(folder / f'{filename}.wav'))
output_filename = folder / f'{filename}_audio.mp4'
ffmpeg.concat(input_video, input_audio, v=1, a=1).output(str(output_filename)).run(overwrite_output=True)
print(f"Final output with audio: {output_filename}")
def run(text, output, mel_timestep, motion_timestep, length_scale, mel_temp, motion_temp):
print("Running synthesis")
output = synthesise(text, mel_timestep, motion_timestep, length_scale, mel_temp, motion_temp)
output['waveform'] = to_waveform(output['mel'], vocoder)
output['bvh'] = to_bvh(output['motion'])[0]
save_to_folder('temp', output, OUTPUT_FOLDER)
return (
output,
output['x_phones'],
plot_tensor(output['mel'].squeeze().cpu().numpy()),
plot_tensor(output['motion'].squeeze().cpu().numpy()),
str(Path(OUTPUT_FOLDER) / f'temp.wav'),
gr.update(interactive=True)
)
def visualize_it(output):
to_stick_video('temp', output['bvh'], OUTPUT_FOLDER)
combine_audio_video('temp', OUTPUT_FOLDER)
return str(Path(OUTPUT_FOLDER) / 'temp_audio.mp4')
# Define the GUI
with gr.Blocks() as demo:
output = gr.State(value=None)
with gr.Row():
gr.Markdown("# Text Input")
with gr.Row():
text = gr.Textbox(label="Text Input")
with gr.Box():
with gr.Row():
gr.Markdown("### Hyper parameters")
with gr.Row():
mel_timestep = gr.Slider(label="Number of timesteps (mel)", minimum=0, maximum=1000, step=1, value=50, interactive=True)
motion_timestep = gr.Slider(label="Number of timesteps (motion)", minimum=0, maximum=1000, step=1, value=500, interactive=True)
length_scale = gr.Slider(label="Length scale (Speaking rate)", minimum=0.01, maximum=3.0, step=0.05, value=1.15, interactive=True)
mel_temp = gr.Slider(label="Sampling temperature (mel)", minimum=0.01, maximum=5.0, step=0.05, value=1.3, interactive=True)
motion_temp = gr.Slider(label="Sampling temperature (motion)", minimum=0.01, maximum=5.0, step=0.05, value=1.5, interactive=True)
synth_btn = gr.Button("Synthesise")
with gr.Box():
with gr.Row():
gr.Markdown("### Phonetised text")
with gr.Row():
phonetised_text = gr.Textbox(label="Phonetised text", interactive=False)
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
motion_representation = gr.Image(interactive=False, label="Motion representation")
with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Box():
with gr.Row():
gr.Markdown("### Generate stick figure visualisation")
with gr.Row():
gr.Markdown("(This will take a while)")
with gr.Row():
visualize = gr.Button("Visualize", interactive=False)
with gr.Row():
video = gr.Video(label="Video", interactive=False)
synth_btn.click(
fn=run,
inputs=[
text,
output,
mel_timestep,
motion_timestep,
length_scale,
mel_temp,
motion_temp
],
outputs=[
output,
phonetised_text,
mel_spectrogram,
motion_representation,
audio,
# video,
visualize
], api_name="diff_ttsg")
visualize.click(
fn=visualize_it,
inputs=[output],
outputs=[video],
)
demo.queue(1)
demo.launch()