Skip to content

shyam671/Federated-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Benchmarking Federated Learning Algorithms

Dependencies

  • PyTorch >= 1.0.0
  • torchvision >= 0.2.1
  • scikit-learn >= 0.23.1

The maximum classification performance achived by the ResNet-50 when trained and validated on CIFAR-10 dataset. This acts as the upper bound for all the below compared federated learning methods.

Parameters Network Dataset Learning Rate Batch-size Epochs Optimizer Schedular
Values ResNet50 CIFAR-10 1e-4 256 150 Adam OneCycleLR
Model Normalization Layer Number of Parameters Accuracy
ResNet-50 BN 23528522 86.91
ResNet-50 GN 23528522 87.48

Drag Racing

Parameters # of clients Learning Rate Comm Rounds Optimizer Client-BatchSize Client Epochs Beta (NonIID) Client Fraction
Values 100 1e-4 150 Adam 64 20 0.5 0.1

IID Distribution

Model Normalization Layer Accuracy
ResNet-50 BN 81.14
ResNet-50 GN 78.60

Drag Racing

Non-IID Distribution

Model Normalization Layer Accuracy
ResNet-50 BN 60.00
ResNet-50 GN 60.51

Drag Racing

Parameters # of clients Learning Rate Comm Rounds Optimizer Client-BatchSize Client Epochs Beta Client Fraction
Values 100 1e-4 50 Adam/SGD 256 5 0.5 0.1
Parameters Alpha Temperature Server Epochs
Values 1 3 50

IID Distribution

Model Normalization Layer Accuracy
ResNet-49 BN 55.28
ResNet-49 GN 53.27

Drag Racing

Non-IID Distribution

Model Normalization Layer Accuracy
ResNet-49 BN 27.01
ResNet-49 GN 19.79

Drag Racing

Additional Experimentation

Parameters # of clients Learning Rate Comm Rounds Optimizer Client-BatchSize Client Epochs Beta (NonIID) Client Fraction
Values 100 0.01 50 SGD 64 5 0.5/1/5 0.1
Method Accuracy @Beta=0.5 Accuracy @Beta=1 Accuracy @Beta=5
FedAvg 49.87 54.17 57.34
FedProx 59.10 62.88 67.61
MOON 63.62 68.23 75.93
Method # of Rounds @beta=0.5 SpeedUp @beta=0.5 # of Rounds @beta=1 SpeedUp @beta=1 # of Rounds @beta=5 SpeedUp @beta=5
FedAvg 50 1x 50 1x 50 1x
FedProx 35 1.42x 34 1.47x 27 1.85x
MOON 25 2x 23 2.17x 16 3.12x

Drag Racing Drag Racing

MOON-Prox is an intuitive extention of MOON. In this, we add a proximal term that acts as regulariser enforcing the local model to be close to the global model. The loss for local device can be written as:

$$ l = l_{cross-entropy} + l_{contrastive} + \frac{\mu}{2\alpha}\Vert \omega_{local} - \omega_{global} \Vert^2 $$

The main advantage of this method is that it has the same number of parameters as moon.

Method Acc@Epochs = 50@Beta=0.5 Accuracy @Epochs = 100Beta=0.5
FedAvg 49.87 56.96
FedProx 59.10 65.21
MOON 63.62 77.03
MOON-Prox($\alpha$= 100) 66.50 77.25
MOON-Prox($\alpha$= 500) 63.16 77.59

Drag Racing

Drag Racing

Acknowledgement

We thank @QinbinLi and @FedML for their open source code that helped in our project and @debcaldarola being a wonderful mentor throughout the project.