Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH] linting tide model #1742

Merged
merged 1 commit into from
Dec 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 36 additions & 12 deletions pytorch_forecasting/models/tide/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,8 +163,11 @@ def decoder_covariate_size(self) -> int:
Returns:
int: size of time-dependent covariates used by the decoder
"""
return len(set(self.hparams.time_varying_reals_decoder) - set(self.target_names)) + sum(
self.embeddings.output_size[name] for name in self.hparams.time_varying_categoricals_decoder
return len(
set(self.hparams.time_varying_reals_decoder) - set(self.target_names)
) + sum(
self.embeddings.output_size[name]
for name in self.hparams.time_varying_categoricals_decoder
)

@property
Expand All @@ -174,8 +177,11 @@ def encoder_covariate_size(self) -> int:
Returns:
int: size of time-dependent covariates used by the encoder
"""
return len(set(self.hparams.time_varying_reals_encoder) - set(self.target_names)) + sum(
self.embeddings.output_size[name] for name in self.hparams.time_varying_categoricals_encoder
return len(
set(self.hparams.time_varying_reals_encoder) - set(self.target_names)
) + sum(
self.embeddings.output_size[name]
for name in self.hparams.time_varying_categoricals_encoder
)

@property
Expand All @@ -186,7 +192,8 @@ def static_size(self) -> int:
int: size of static covariates
"""
return len(self.hparams.static_reals) + sum(
self.embeddings.output_size[name] for name in self.hparams.static_categoricals
self.embeddings.output_size[name]
for name in self.hparams.static_categoricals
)

@classmethod
Expand Down Expand Up @@ -215,12 +222,19 @@ def from_dataset(cls, dataset: TimeSeriesDataSet, **kwargs):
dataset.max_prediction_length == dataset.min_prediction_length
), "only fixed prediction length is allowed, but max_prediction_length != min_prediction_length"

assert dataset.randomize_length is None, "length has to be fixed, but randomize_length is not None"
assert not dataset.add_relative_time_idx, "add_relative_time_idx has to be False"
assert (
dataset.randomize_length is None
), "length has to be fixed, but randomize_length is not None"
assert (
not dataset.add_relative_time_idx
), "add_relative_time_idx has to be False"

new_kwargs = copy(kwargs)
new_kwargs.update(
{"output_chunk_length": dataset.max_prediction_length, "input_chunk_length": dataset.max_encoder_length}
{
"output_chunk_length": dataset.max_prediction_length,
"input_chunk_length": dataset.max_encoder_length,
}
)
new_kwargs.update(cls.deduce_default_output_parameters(dataset, kwargs, MAE()))
# initialize class
Expand All @@ -246,7 +260,11 @@ def forward(self, x: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
if self.encoder_covariate_size > 0:
# encoder_features = self.extract_features(x, self.embeddings, period="encoder")
encoder_x_t = torch.concat(
[encoder_features[name] for name in self.encoder_variables if name not in self.target_names],
[
encoder_features[name]
for name in self.encoder_variables
if name not in self.target_names
],
dim=2,
)
input_vector = torch.concat((encoder_y, encoder_x_t), dim=2)
Expand All @@ -256,14 +274,20 @@ def forward(self, x: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
input_vector = encoder_y

if self.decoder_covariate_size > 0:
decoder_features = self.extract_features(x, self.embeddings, period="decoder")
decoder_x_t = torch.concat([decoder_features[name] for name in self.decoder_variables], dim=2)
decoder_features = self.extract_features(
x, self.embeddings, period="decoder"
)
decoder_x_t = torch.concat(
[decoder_features[name] for name in self.decoder_variables], dim=2
)
else:
decoder_x_t = None

# statics
if self.static_size > 0:
x_s = torch.concat([encoder_features[name][:, 0] for name in self.static_variables], dim=1)
x_s = torch.concat(
[encoder_features[name][:, 0] for name in self.static_variables], dim=1
)
else:
x_s = None

Expand Down
28 changes: 22 additions & 6 deletions pytorch_forecasting/models/tide/sub_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,11 @@ def __init__(
else:
historical_future_covariates_flat_dim = 0

encoder_dim = self.input_chunk_length * output_dim + historical_future_covariates_flat_dim + static_cov_dim
encoder_dim = (
self.input_chunk_length * output_dim
+ historical_future_covariates_flat_dim
+ static_cov_dim
)

self.encoders = nn.Sequential(
_ResidualBlock(
Expand Down Expand Up @@ -209,9 +213,13 @@ def __init__(
dropout=dropout,
)

self.lookback_skip = nn.Linear(self.input_chunk_length, self.output_chunk_length)
self.lookback_skip = nn.Linear(
self.input_chunk_length, self.output_chunk_length
)

def forward(self, x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]) -> torch.Tensor:
def forward(
self, x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]
) -> torch.Tensor:
"""TiDE model forward pass.
Parameters
----------
Expand Down Expand Up @@ -247,7 +255,9 @@ def forward(self, x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[tor
)
if self.temporal_width_future:
# project input features across all input and output time steps
x_dynamic_future_covariates = self.future_cov_projection(x_dynamic_future_covariates)
x_dynamic_future_covariates = self.future_cov_projection(
x_dynamic_future_covariates
)
else:
x_dynamic_future_covariates = None

Expand All @@ -270,7 +280,11 @@ def forward(self, x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[tor
# stack and temporally decode with future covariate last output steps
temporal_decoder_input = [
decoded,
(x_dynamic_future_covariates[:, -self.output_chunk_length :, :] if self.future_cov_dim > 0 else None),
(
x_dynamic_future_covariates[:, -self.output_chunk_length :, :]
if self.future_cov_dim > 0
else None
),
]
temporal_decoder_input = [t for t in temporal_decoder_input if t is not None]

Expand All @@ -283,7 +297,9 @@ def forward(self, x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[tor
skip = self.lookback_skip(x_lookback.transpose(1, 2)).transpose(1, 2)

# add skip connection
y = temporal_decoded + skip.reshape_as(temporal_decoded) # skip.view(temporal_decoded.shape)
y = temporal_decoded + skip.reshape_as(
temporal_decoded
) # skip.view(temporal_decoded.shape)

y = y.view(-1, self.output_chunk_length, self.output_dim)
return y
Loading