You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thanks for your effort and maintenance of the package! I am using your pipeline for hdWGCNA with pseudobulk data and am running into a problem with the ConstructPseudobulk function. When I try to run it without specifying label_col, I get the following error message:
Error in t.default(datExpr[genes_use, ]) : argument is not a matrix
This is with setting the L2 cell type labels from Azimuth as the group.by argument, and the PatientID column as the replicate_col argument (see my code below). If I additionally set label_col as the metadata column for diagnosis, the function works as expected. Looking at the datExpr output, I could probably construct this table with Seurat's AggregateExpression function, but it would be nice to use ConstructPseudobulk without having to specify label_col if possible.
Hi, I just tested this and I am not able to reproduce the error. I am able to run this function without specifying label_col, so I am not sure what is going on in your case. Can you try to set label_col to the same as your replicate_col?
Hello,
Thanks for your effort and maintenance of the package! I am using your pipeline for hdWGCNA with pseudobulk data and am running into a problem with the ConstructPseudobulk function. When I try to run it without specifying label_col, I get the following error message:
Error in t.default(datExpr[genes_use, ]) : argument is not a matrix
This is with setting the L2 cell type labels from Azimuth as the group.by argument, and the PatientID column as the replicate_col argument (see my code below). If I additionally set label_col as the metadata column for diagnosis, the function works as expected. Looking at the datExpr output, I could probably construct this table with Seurat's AggregateExpression function, but it would be nice to use ConstructPseudobulk without having to specify label_col if possible.
Code I used up to this point:
sessionInfo()
` R version 4.4.0 (2024-04-24 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets
[7] methods base
other attached packages:
[1] patchwork_1.3.0 cowplot_1.1.3 lubridate_1.9.3
[4] forcats_1.0.0 purrr_1.0.2 readr_2.1.5
[7] tidyr_1.3.1 tibble_3.2.1 tidyverse_2.0.0
[10] hdWGCNA_0.4.00 GenomicRanges_1.56.2 GenomeInfoDb_1.40.1
[13] IRanges_2.38.1 S4Vectors_0.42.1 BiocGenerics_0.50.0
[16] GeneOverlap_1.40.0 UCell_2.8.0 tidygraph_1.3.1
[19] ggraph_2.2.1 igraph_2.0.3 dplyr_1.1.4
[22] WGCNA_1.73 fastcluster_1.2.6 dynamicTreeCut_1.63-1
[25] ggrepel_0.9.6 Seurat_5.1.0 SeuratObject_5.0.2
[28] sp_2.1-4 harmony_1.2.1 Rcpp_1.0.12
[31] ggplot2_3.5.1 stringr_1.5.1
loaded via a namespace (and not attached):
[1] RcppAnnoy_0.0.22 splines_4.4.0
[3] later_1.3.2 bitops_1.0-9
[5] polyclip_1.10-7 preprocessCore_1.66.0
[7] rpart_4.1.23 fastDummies_1.7.4
[9] lifecycle_1.0.4 doParallel_1.0.17
[11] globals_0.16.3 lattice_0.22-6
[13] MASS_7.3-60.2 backports_1.5.0
[15] magrittr_2.0.3 Hmisc_5.1-3
[17] plotly_4.10.4 rmarkdown_2.28
[19] httpuv_1.6.15 sctransform_0.4.1
[21] spam_2.11-0 spatstat.sparse_3.1-0
[23] reticulate_1.39.0 pbapply_1.7-2
[25] DBI_1.2.3 RColorBrewer_1.1-3
[27] abind_1.4-8 zlibbioc_1.50.0
[29] Rtsne_0.17 nnet_7.3-19
[31] tweenr_2.0.3 GenomeInfoDbData_1.2.12
[33] irlba_2.3.5.1 listenv_0.9.1
[35] spatstat.utils_3.1-0 goftest_1.2-3
[37] RSpectra_0.16-2 spatstat.random_3.3-2
[39] fitdistrplus_1.2-1 parallelly_1.38.0
[41] DelayedArray_0.30.1 leiden_0.4.3.1
[43] codetools_0.2-20 ggforce_0.4.2
[45] tidyselect_1.2.1 UCSC.utils_1.0.0
[47] farver_2.1.2 tester_0.2.0
[49] viridis_0.6.5 matrixStats_1.4.1
[51] base64enc_0.1-3 spatstat.explore_3.3-2
[53] jsonlite_1.8.9 BiocNeighbors_1.22.0
[55] progressr_0.15.0 Formula_1.2-5
[57] ggridges_0.5.6 survival_3.5-8
[59] iterators_1.0.14 foreach_1.5.2
[61] tools_4.4.0 ica_1.0-3
[63] glue_1.7.0 SparseArray_1.4.8
[65] gridExtra_2.3 xfun_0.48
[67] MatrixGenerics_1.16.0 withr_3.0.2
[69] fastmap_1.1.1 fansi_1.0.6
[71] caTools_1.18.3 digest_0.6.35
[73] timechange_0.3.0 R6_2.5.1
[75] mime_0.12 colorspace_2.1-1
[77] scattermore_1.2 GO.db_3.19.1
[79] gtools_3.9.5 tensor_1.5
[81] spatstat.data_3.1-2 RSQLite_2.3.7
[83] utf8_1.2.4 generics_0.1.3
[85] data.table_1.16.2 S4Arrays_1.4.1
[87] graphlayouts_1.2.0 httr_1.4.7
[89] htmlwidgets_1.6.4 uwot_0.2.2
[91] pkgconfig_2.0.3 gtable_0.3.6
[93] blob_1.2.4 lmtest_0.9-40
[95] impute_1.78.0 SingleCellExperiment_1.26.0
[97] XVector_0.44.0 htmltools_0.5.8.1
[99] dotCall64_1.2 scales_1.3.0
[101] Biobase_2.64.0 png_0.1-8
[103] spatstat.univar_3.0-1 knitr_1.48
[105] rstudioapi_0.17.1 tzdb_0.4.0
[107] reshape2_1.4.4 checkmate_2.3.2
[109] nlme_3.1-164 proxy_0.4-27
[111] cachem_1.0.8 zoo_1.8-12
[113] KernSmooth_2.23-22 parallel_4.4.0
[115] miniUI_0.1.1.1 foreign_0.8-86
[117] AnnotationDbi_1.66.0 pillar_1.9.0
[119] grid_4.4.0 vctrs_0.6.5
[121] gplots_3.2.0 RANN_2.6.2
[123] promises_1.3.0 xtable_1.8-4
[125] cluster_2.1.6 htmlTable_2.4.3
[127] evaluate_1.0.1 cli_3.6.2
[129] compiler_4.4.0 rlang_1.1.3
[131] crayon_1.5.3 future.apply_1.11.3
[133] labeling_0.4.3 plyr_1.8.9
[135] stringi_1.8.4 BiocParallel_1.38.0
[137] viridisLite_0.4.2 deldir_2.0-4
[139] munsell_0.5.1 Biostrings_2.72.1
[141] lazyeval_0.2.2 spatstat.geom_3.3-3
[143] Matrix_1.7-0 RcppHNSW_0.6.0
[145] hms_1.1.3 bit64_4.5.2
[147] future_1.34.0 KEGGREST_1.44.1
[149] shiny_1.9.1 SummarizedExperiment_1.34.0
[151] ROCR_1.0-11 memoise_2.0.1
[153] bit_4.5.0 `
The text was updated successfully, but these errors were encountered: