Skip to content

Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification (ACL 2024)

Notifications You must be signed in to change notification settings

snowood1/Zero-Shot-PLOVER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

zero-shot-PLOVER (ZSP)

This repository contains the essential code and data for the paper Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification (ACL 2024).

ZSP is a modality-aware tree-query framework based on natural language inference (NLI) to solve relation classification for PLOVER ontology. The goal is to offer political scientists a pragmatic solution beyond mere dataset annotation for black-box supervised models, providing a practical alternative that taps into existing knowledge and codebook resources.

Alt

Structure

  • codebooks: CAMEO and PLOVER ontology codebooks
  • datasets: PLV and AW datasets.
  • prompts: Hypothesis designed from the codebooks.
  • scores: saved NLI scores for reproduction.
  • main_script.py: Our main python script file.
  • utils.py: utility functions
  • demo.ipynb: a demo Colab notebook that loads our saved query result.

Quick Start

  • Click the Colab demo to see the figures and report shown in the paper: Open In Colab

  • Offline inference using a saved checkpoint of NLI scores. No GPU computation is required.

    export DATASET=PLV_test; \
    PROMPT=Tree; \
    CUDA_VISIBLE_DEVICES=0 \
    python main_script.py \
    --data_dir ./datasets/${DATASET}.tsv \
    --prompt_dir ./prompts/${PROMPT}.txt  \
    --score_dir ./scores/${DATASET}-${PROMPT}.npy \
    --model_name roberta-large-mnli \
    --output_dir ./outputs/${DATASET}-${PROMPT}-result.csv \
    --consult_penalty 0.02 \
    --infer_setting offline \
    --run_offline_nli False \
    --write_score_result False \
    --infer_details True \
    --summary_details True
    
  • Offline inference : Run NLI for all prompts from scratch on GPUs => NLI scores => offline inference. This might take longer than Online inference, but it can save the NLI scores file for fast reproduction and parameter study.

    export DATASET=PLV_test; \
    PROMPT=Tree; \
    CUDA_VISIBLE_DEVICES=0 \
    python main_script.py \
    --data_dir ./datasets/${DATASET}.tsv \
    --prompt_dir ./prompts/${PROMPT}.txt  \
    --score_dir ./scores/${DATASET}-${PROMPT}.npy \
    --model_name roberta-large-mnli \
    --output_dir ./outputs/${DATASET}-${PROMPT}-result.csv \
    --consult_penalty 0.02 \
    --infer_setting offline \
    --run_offline_nli True \
    --write_score_result True \
    --infer_details True \
    --summary_details True
    
  • Online inference: Run NLI scores for tree prompts on GPUs and do inference simutaneously.

    export DATASET=PLV_test; \
    PROMPT=Tree; \
    CUDA_VISIBLE_DEVICES=0 \
    python main_script.py \
    --data_dir ./datasets/${DATASET}.tsv \
    --prompt_dir ./prompts/${PROMPT}.txt  \
    --score_dir ./scores/${DATASET}-${PROMPT}.npy \
    --model_name roberta-large-mnli \
    --output_dir ./outputs/${DATASET}-${PROMPT}-result.csv \
    --consult_penalty 0.02 \
    --infer_setting online \
    --infer_details True \
    --summary_details True
    

Citation

If you find this repo useful in your research, please consider citing:

  @inproceedings{hu2024leveraging,
    title={Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification},
    author={Hu, Yibo and Parolin, Erick Skorupa and Khan, Latifur and Brandt, Patrick and Osorio, Javier and D’Orazio, Vito},
    booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
    pages={583--603},
    year={2024}
  }

About

Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification (ACL 2024)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published