Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upgrade to Docusaurus 3.4 #960

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
title: "Event parameters"
---

This page lists all the parameters that Snowplow trackers use when firing events to push data into the Snowplow collectors. Each parameter maps onto one or more fields in the Snowplow events table employed in storage.
This page lists all the parameters that Snowplow trackers use when firing events to push data into the Snowplow collectors. Each parameter maps onto one or more fields in the Snowplow events table employed in storage.

This page is for you if you want to understand the tracker payload in more detail, and especially if you are building your own tracker. In the latter case, utilizing the parameters documented here will ensure that your tracker works with the rest of the Snowplow stack.

Expand Down Expand Up @@ -62,42 +62,42 @@ If enabled, the [activity tracking function](/docs/collecting-data/collecting-fr

Page pings are identified by `e=pp`. As well as all the standard web fields, there are four additional fields that `pp` includes, which are used to identify how users are scrolling over web pages:

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|----------------|----------|-----------------------------------------------------|--------------------|
| `pp_mix` | `pp_xoffset_min` | integer | Minimum page x offset seen in the last ping period | `0` |
| `pp_max` | `pp_xoffset_max` | integer | Maximum page x offset seen in the last ping period | `100` |
| `pp_miy` | `pp_yoffset_min` | integer | Minimum page y offset seen in the last ping period | `0` |
| `pp_may` | `pp_yoffset_max` | integer | Maximum page y offset seen in the last ping period | `100` |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| ------------- | ---------------- | -------- | -------------------------------------------------- | ------------------ |
| `pp_mix` | `pp_xoffset_min` | integer | Minimum page x offset seen in the last ping period | `0` |
| `pp_max` | `pp_xoffset_max` | integer | Maximum page x offset seen in the last ping period | `100` |
| `pp_miy` | `pp_yoffset_min` | integer | Minimum page y offset seen in the last ping period | `0` |
| `pp_may` | `pp_yoffset_max` | integer | Maximum page y offset seen in the last ping period | `100` |

#### Transaction tracking

Transaction events allow you to track a transaction. The items of the transaction can be tracked using [Transaction Item events](#transaction-item-events).

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|----------------|----------|------------------------------------------------------|--------------------|
| `tr_id` | `tr_orderid` | text | Order ID | `12345` |
| `tr_af` | `tr_affiliation` | text | Transaction affiliation (e.g. channel) | `Web` |
| `tr_tt` | `tr_total` | decimal | Transaction total value | `9.99` |
| `tr_tx` | `tr_tax` | decimal | Transaction tax value (i.e. amount of VAT included) | `1.98` |
| `tr_sh` | `tr_shipping` | decimal | Delivery cost charged | `3.00` |
| `tr_ci` | `tr_city` | text | Delivery address: city | `London` |
| `tr_st` | `tr_state` | text | Delivery address: state | `Denver` |
| `tr_co` | `tr_country` | text | Delivery address: country | `United Kingdom` |
| `tr_cu` | `tr_currency` | text | Transaction Currency | `GBP` |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| ------------- | ---------------- | -------- | --------------------------------------------------- | ------------------ |
| `tr_id` | `tr_orderid` | text | Order ID | `12345` |
| `tr_af` | `tr_affiliation` | text | Transaction affiliation (e.g. channel) | `Web` |
| `tr_tt` | `tr_total` | decimal | Transaction total value | `9.99` |
| `tr_tx` | `tr_tax` | decimal | Transaction tax value (i.e. amount of VAT included) | `1.98` |
| `tr_sh` | `tr_shipping` | decimal | Delivery cost charged | `3.00` |
| `tr_ci` | `tr_city` | text | Delivery address: city | `London` |
| `tr_st` | `tr_state` | text | Delivery address: state | `Denver` |
| `tr_co` | `tr_country` | text | Delivery address: country | `United Kingdom` |
| `tr_cu` | `tr_currency` | text | Transaction Currency | `GBP` |

#### Transaction item events

Transaction item events are separate events, representing the items of a transaction, which are linked to a Transaction event via `ti_id` which should map to `tr_id` of a transaction event.

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|---------------|---------------|----------|------------------|--------------------|
| `ti_id` | `ti_orderid` | text | Order ID | `12345` |
| `ti_sk` | `ti_sku` | text | Item SKU | Yes | \`pbz0025' |
| `ti_nm` | `ti_name` | text | Item name | Yes | `black-tarot` |
| `ti_ca` | `ti_category` | text | Item category | Yes | `tarot` |
| `ti_pr` | `ti_price` | decimal | Item price | Yes | `7.99` |
| `ti_qu` | `ti_quantity` | integer | Item quantity | Yes | `2` |
| `ti_cu` | `ti_currency` | text | Currency | Yes | `USD` |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| ------------- | ---------------- | -------- | --------------- | ------------------ |
| `ti_id` | `ti_orderid` | text | Order ID | `12345` |
| `ti_sk` | `ti_sku` | text | Item SKU | `pbz0025` |
| `ti_nm` | `ti_name` | text | Item name | `black-tarot` |
| `ti_ca` | `ti_category` | text | Item category | `tarot` |
| `ti_pr` | `ti_price` | decimal | Item price | `7.99` |
| `ti_qu` | `ti_quantity` | integer | Item quantity | `2` |
| `ti_cu` | `ti_currency` | text | Currency | `USD` |

#### Structured event tracking

Expand All @@ -111,13 +111,13 @@ We recommend using [self-describing events](#self-describing-events) for custom

As well as setting `e=se`, there are five custom event specific parameters that can be set:

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|---------------|---------------|----------|-------------------------------------------------------------------------|-------------------------------|
| `se_ca` | `se_category` | text | The category of event | `Ecomm`, `Media` |
| `se_ac` | `se_action` | text | The action / event itself | `add-to-basket`, `play-video` |
| `se_la` | `se_label` | text | A label often used to refer to the 'object' the action is performed on | `dog-skateboarding-video` |
| `se_pr` | `se_property` | text | A property associated with either the action or the object | `hd` |
| `se_va` | `se_value` | decimal | A value associated with the user action | `13.99` |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| ------------- | ---------------- | -------- | ---------------------------------------------------------------------- | ----------------------------- |
| `se_ca` | `se_category` | text | The category of event | `Ecomm`, `Media` |
| `se_ac` | `se_action` | text | The action / event itself | `add-to-basket`, `play-video` |
| `se_la` | `se_label` | text | A label often used to refer to the 'object' the action is performed on | `dog-skateboarding-video` |
| `se_pr` | `se_property` | text | A property associated with either the action or the object | `hd` |
| `se_va` | `se_value` | decimal | A value associated with the user action | `13.99` |

### Event Entity Tracking

Expand All @@ -128,10 +128,10 @@ To learn about context entities and how they are serialized in the event payload

### Event parameters

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|---------------|-----------------------|----------|------------------|----------------------------------------|
| `e` | `event` | text | Event type | (See table [above](#snowplow-events)) |
| `eid` | `event_id` | text | Event UUID | `606adff6-9ccc-41f4-8807-db8fdb600df8` |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| ------------- | ---------------- | -------- | --------------- | -------------------------------------- |
| `e` | `event` | text | Event type | (See table [above](#snowplow-events)) |
| `eid` | `event_id` | text | Event UUID | `606adff6-9ccc-41f4-8807-db8fdb600df8` |

:::caution

Expand All @@ -147,12 +147,12 @@ The event ID (`eid`) is the unique identifier (UUID) for this row. This should b

### Application parameters

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|---------------|-----------------------------|----------|----------------------------------------------|-------------------------|
| `tna` | `name_tracker` | text | The tracker namespace | `tracker_1` |
| `aid` | `app_id` | text | Unique identifier for website / application | `snow-game-android` |
| `p` | `platform` | text | The platform the app runs on | `web`, `mob`, `app` |
| `tv` | `v_tracker` | text | Identifier for Snowplow tracker | `js-2.16.2` |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| ------------- | ---------------- | -------- | ------------------------------------------- | ------------------- |
| `tna` | `name_tracker` | text | The tracker namespace | `tracker_1` |
| `aid` | `app_id` | text | Unique identifier for website / application | `snow-game-android` |
| `p` | `platform` | text | The platform the app runs on | `web`, `mob`, `app` |
| `tv` | `v_tracker` | text | Identifier for Snowplow tracker | `js-2.16.2` |

:::info

Expand All @@ -175,7 +175,7 @@ The tracker namespace parameter is used to distinguish between different tracker

### Timestamp parameters

| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
| **Parameter** | **Table Column** | **Type** | **Description** | **Example values** |
|---------------|-----------------------|----------|--------------------------------------------------------------|--------------------|
| `dtm` | `dvce_created_tstamp` | int | Timestamp when event occurred, as recorded by client device | `1361553733313` |
| `stm` | `dvce_sent_tstamp` | int | Timestamp when event was sent by client device to collector | `1361553733371` |
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ To process raw web vitals event data, we have included an optional module to mod

This custom module consists of a series of dbt models which produce the following aggregated models from the raw web vitals events:

Derived table | Table description |
Derived table | Table description | dbt
---|---|---
`snowplow_web_vitals` | Incremental table used as a base for storing core web vital events (first event per page view). | [Docs](https://snowplow.github.io/dbt-snowplow-web/#!/model/model.snowplow_web.snowplow_web_vitals)
`snowplow_web_vital_measurements` | Drop and recompute table to use for visualizations that takes core web vital measurements at the user specified percentile point (defaulted to 75). | [Docs](https://snowplow.github.io/dbt-snowplow-web/#!/model/model.snowplow_web.snowplow_web_vital_measurements)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ To process raw events created by the Snowplow Enhanced Consent plugin we have in

This custom module consists of a series of dbt models which produce the following aggregated models from the raw consent tracking events:

Derived table | Table description |
Derived table | Table description | dbt
---|---|---
`snowplow_web_consent_log` | Snowplow incremental table showing the audit trail of consent and Consent Management Platform (cmp) events | [Docs](https://snowplow.github.io/dbt-snowplow-web/#!/model/model.snowplow_web.snowplow_web_consent_log)
`snowplow_web_consent_users` | Incremental table of user consent tracking stats | [Docs](https://snowplow.github.io/dbt-snowplow-web/#!/model/model.snowplow_web.snowplow_web_consent_users)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ All tracked e-commerce properties are tracked as context entities.

[The package](/docs/modeling-your-data/modeling-your-data-with-dbt/dbt-models/dbt-ecommerce-data-model/index.md) contains a fully incremental model that transforms raw e-commerce event data into a set of derived tables based around the following e-commerce data objects: carts, checkouts, products and transactions.

Derived table | Table description |
Derived table | Table description | dbt
---|---|---
`snowplow_ecommerce_base_events_this_run` | Base: Performs the incremental logic, the table contains a de-duped data set of all events required for the current run of the model, and is the foundation for all other models generated. | [Docs](https://snowplow.github.io/dbt-snowplow-ecommerce/#!/model/model.snowplow_ecommerce.snowplow_ecommerce_base_sessions_this_run)
`snowplow_ecommerce_cart_interactions` | Carts: Parses the cart interactions that occur to provide handy filters and aggregations, which helps identify what happened to carts on a session level to extract, for example, abandoned carts with ease. | [Docs](https://snowplow.github.io/dbt-snowplow-ecommerce/#!/model/model.snowplow_ecommerce.snowplow_ecommerce_cart_interactions)
Expand All @@ -167,7 +167,7 @@ Derived table | Table description |

## E-commerce analytics accelerator

Follow the [e-commerce accelerator](https://snowplow.io/data-product-accelerators/ecommerce-analytics-dpa/) for a complete guide to build a deeper understanding of customer behavior in your ecommerce store.
Follow the [e-commerce accelerator](https://snowplow.io/data-product-accelerators/ecommerce-analytics-dpa/) for a complete guide to build a deeper understanding of customer behavior in your ecommerce store.

<details>
<summary>Old e-commerce events</summary>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ They consist of the following events and context entities:

[The media player dbt package](/docs/modeling-your-data/modeling-your-data-with-dbt/dbt-models/dbt-media-player-data-model/index.md) contains a fully incremental model that transforms raw media event data into a set of derived tables based around the following data objects: media plays, media stats, media ad views, and media ads.

Derived table | Table description |
Derived table | Table description | dbt
---|---|---
`snowplow_media_player_base` | This derived table summarises the key media player events and metrics of each media element on a media_id and pageview level which is considered as a base aggregation level for media interactions. | [Docs](https://snowplow.github.io/dbt-snowplow-media-player/#!/model/model.snowplow_media_player.snowplow_media_player_base)
`snowplow_media_player_plays_by_pageview` | This view removes impressions from the '_base' table to summarise media plays on a page_view by media_id level. | [Docs](https://snowplow.github.io/dbt-snowplow-media-player/#!/model/model.snowplow_media_player.snowplow_media_player_plays_by_pageview)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,12 +20,12 @@ If enabled, the [activity tracking function](/docs/collecting-data/collecting-fr

Page pings are identified by `e=pp`. As well as all the standard web fields, there are four additional fields that `pp` includes, which are used to identify how users are scrolling over web pages:

| **Atomic Table Column** | **Type** | **Description** | **Example values** |
|----------|-----------------------------------------------------|--------------------|
| `pp_xoffset_min` | integer | Minimum page x offset seen in the last ping period | `0` |
| `pp_xoffset_max` | integer | Maximum page x offset seen in the last ping period | `100` |
| `pp_yoffset_min` | integer | Minimum page y offset seen in the last ping period | `0` |
| `pp_yoffset_max` | integer | Maximum page y offset seen in the last ping period | `100` |
| **Atomic Table Column** | **Type** | **Description** | **Example values** |
| ----------------------- | -------- | -------------------------------------------------- | ------------------ |
| `pp_xoffset_min` | integer | Minimum page x offset seen in the last ping period | `0` |
| `pp_xoffset_max` | integer | Maximum page x offset seen in the last ping period | `100` |
| `pp_yoffset_min` | integer | Minimum page y offset seen in the last ping period | `0` |
| `pp_yoffset_max` | integer | Maximum page y offset seen in the last ping period | `100` |

## On mobile

Expand Down
3 changes: 2 additions & 1 deletion docs/getting-started-on-community-edition/_diagram.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,8 @@ flowchart LR
`loader("<b>${props.warehouse} Loader</b>\n<i>(see below)</i>")`
}
atomic[("<b>Events</b>\n(${props.warehouse == 'Data Lake' ? props.bucket : props.warehouse})")]
collect---iglu %% invisible link for alignment
collect---iglu
%% above line is an invisible link for alignment
enrich-.-oiglu<-.->igludb
collect-->|"<b>Raw Stream</b><br/>(${props.stream})"| enrich
enrich-->|"<b>Enriched Stream</b><br/>(${props.stream})"| loader-->atomic
Expand Down
2 changes: 1 addition & 1 deletion docs/introduction.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ Thousands of organizations like Burberry, Strava, and Auto Trader rely on Snowpl

### Why Next-Gen CDI?​

Snowplow is built from the ground up to not only lay the foundation for an organization's advanced analytics use cases, but to also power machine learning and AI use cases, including those powered by generative AI.
Snowplow is built from the ground up to not only lay the foundation for an organization's advanced analytics use cases, but to also power machine learning and AI use cases, including those powered by generative AI.

Key benefits of Snowplow’s Next-Gen CDI:
* Data Depth & Quality
Expand Down
Loading