A RNA-Seq annotation pipeline based on SRA Toolkit, fastQC, Trimmomatic, HISAT2, BBMap, picard, GATK3, and samtools. It's distributed as a python package.
There are two parts in this pipeline.
Rnannot part - doing sequence alignment and converting output to bigwig format. The outputs of this part should contains one bam file, one indexed bam file, one bigwig file, one bed file and one Source.txt file. If temp files are kept in this part(option -t), it will also generate one unsorted bam file, one bam and one sam file generated by SINGLE layout SRA files, one bam and one sam file generated by PAIRED layout SRA files.
Add_trackList part - adding bam, bigwig file and junction reads to trackList.json file on apollo-stage server. This part should be run on apollo-stage server. It will transfer output files of anannot to apollo-stage and node1 server and update the trackList.json file.
For rnannot
- At least Python 3.5
- Java
- SRA Toolkit
- samtools
- bam_to_bigwig(python3-version)
- rsem (prerequisite of bam_to_bigwig)
- wigToBigWig (prerequisite of bam_to_bigwig)
- regtools
- edirect
For add_trackList, the following JBrowse processing scripts are needed
- add-bam-track.pl
- add-bw-track.pl
- flatfile-to-json.pl
After you set up all of the prerequisites, run setup.py file for installing.
python setup.py install
. It will install a copy of FastQC, Trimmomatic, HISAT2, GATK3, and picard in this python package. You may need to add--user
in arguments.
pip uninstall rnannot
download_sra_metadata.py [-t TAXID] [-o [OUTPUT]]
Use pipeline to download the sra metadata,the output file will be used for the input file of RNAseq_annotate.py.
optional arguments:
-t TAXID, --taxid TAXID find all RNA SRA files for a given taxid
-o [OUTPUT], --output [OUTOUT] directory and name of output folder at, if not specified, use current folder
download_sra_metadata_by_accessions.py [-a ACCESSION] [-o [OUTPUT]]
Download the sra metadata of specified accessions, the output file will be the input file of RNAseq_annotate.py.
If processing multiple accessions, use spaces between each accession and output file directory.
optional arguments:
-a ACCESSION, --accession ACCESSION find the RNA SRA files for the given accessions
-o [OUTPUT], --output [OUTOUT] output directory and output file name
if not specified, use current folder and file name "ACCESSION.tsv"
RNAseq_annotate.py [-h] [-i INPUT] [-g GENOME] [-n [NAME]]
[-o [OUTDIR]] [-a ASSEMBLY] [-t]
[-m MAXIMUMSRA]
Easy to use pipeline built for large-scale RNA-seq mapping with a genome
assembly
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
A tsv file with a list of SRA runs' information.
-g GENOME, --genome GENOME
A fasta file to align with.
-n [NAME], --name [NAME]
name of the output folder, if not specified, use the
time of start
-o [OUTDIR], --outdir [OUTDIR]
directory of output folder - it must already exit. if not specified, use
current folder
-a ASSEMBLY, --assembly ASSEMBLY
The assembly name is used for naming output file
-t, --tempFile
if specified, intermediate output bam files will be kept
-m MAXIMUMSRA, --MaximumSRA MAXIMUMSRA
The maximum amout of SRA files downloaded from NCBI. The default is 10
add_trackList.py [-h] [-a INPUT_ACCOUNT] [-p INPUT_PATH]
[-bam INPUT_BAM] [-bigwig INPUT_BIGWIG]
[-bai INPUT_BAI] [-bed INPUT_BED] [-track INPUT_TRACK]
[-s SOURCE]
optional arguments:
-h, --help show this help message and exit
-a INPUT_ACCOUNT, --input_account INPUT_ACCOUNT
scinet account e.g [email protected]
-p INPUT_PATH, --input_path INPUT_PATH
path of RNA_annotation output files on Scinet
-bam INPUT_BAM, --input_bam INPUT_BAM
bam file name
-bigwig INPUT_BIGWIG, --input_bigwig INPUT_BIGWIG
bigwig file name
-bai INPUT_BAI, --input_bai INPUT_BAI
indexed bam file name
-bed INPUT_BED, --input_bed INPUT_BED
indexed bed file name
-track INPUT_TRACK, --input_track INPUT_TRACK
trackList.json file path
-s SOURCE, --Source SOURCE
Source.txt file name
move_data.py [-h] [-Node1a NODE1_ACCOUNT] [-s SOURCE]
optional arguments:
-h, --help show this help message and exit
-Node1a NODE1_ACCOUNT, --node1_account NODE1_ACCOUNT
apollo-nodea account e.g user@apollo-
node1,nal.usda.gov
-s SOURCE, --Source SOURCE
Source.txt file path
Rnannot
download_sra_metadata.py -t 1049336 -o 1049336.tsv
download_sra_metadata_by_accessions.py -a SRX12101703 SRX12101702 SRX12101701 -o SRX12101703.tsv SRX12101702.tsv SRX12101701.tsv
wget "https://i5k.nal.usda.gov/data/Arthropoda/ephdan-(Ephemera_danica)/BCM-After-Atlas/1.Genome%20Assembly/BCM-After-Atlas/Scaffolds/Edan07162013.scaffolds.fa.gz"
RNAseq_annotate.py -i ./example/1049336.tsv -g ./Edan07162013.scaffolds.fa.gz -a Edan_2.0
Add_trackList
add_trackList.py -a [email protected] -p /project/nal_genomics/user-name/NAL_RNA_seq_annotation_pipeline/rnannot/2020-05-20 -bam Tricas_Tcas5.2_RNA-Seq-alignments_2020-05-20.bam -bai Tricas_Tcas5.2_RNA-Seq-alignments_2020-05-20.bam.bai -bigwig Tricas_Tcas5.2_RNA-Seq-alignments_2020-05-20.bigwig -bed Tricas_Tcas5.2_RNA-Seq-alignments_2020-05-20.bed -track /app/data/other_species/tricas/Tcas5.2/jbrowse/data/trackList.json -s Source.txt
move_data.py -Node1a [email protected] -s SOURCE.txt
We provide docker image which includes all of the prerequisites and has everything installed. It also contains the whole repo, so you don't need to clone this repo if you use this docker container. The working directory of this image is set to /opt/output and all of the repo files are in /opt/RNA_repo
To get this docker image, you can:
-
Build this image by Dockerfile. clone this repo and run
sudo docker build -t [your_image_tag_name] .
or
-
Pull this image from docker hub. run
sudo docker pull k2025242322/i5k_rna_seq_annotation_pipeline:latest
Docker commands:
- run
sudo docker run --rm --mount type=bind,source=[The directory you would like to bind],target=/opt/output [your_image_tag_name] python3 /opt/RNA_repo/rnannot/download_sra_metadata.py -t [tax_id] -o [tax_id.tsv]
- run
wget [genome file URL]
(download your file in the binding directory) orsudo docker run --rm --mount type=bind,source=[The directory you would like to bind],target=/opt/output [your_image_tag_name] wget [genome file URL]
- run
sudo docker run --rm --mount type=bind,source=[The directory you would like to bind],target=/opt/output [your_image_tag_name] python3 /opt/RNA_repo/rnannot/RNAseq_annotate.py -i /opt/output/[tax_id.tsv] -g /opt/output/[genome file] -a [assembly_name]
1. Setup conda env
- https://scinet.usda.gov/guide/conda/
- Used conda to create an new env.
- Package Pysam is not included in the module list of Ceres. Use conda to install them into env. (Python3 and Perl5 may be insatlled into env at the same time) Pysam: https://anaconda.org/bioconda/pysam
We also provide a conda venv which is ready to be used. If you don't want to create your conda env, you can skip step1~4 and run the following command.
module load minicanda
andconda activate /lustre/project/nal_genomics/hsiukang/rnannot_venv
- Note that you may need to specify the full path of the command for it to work.
2. Git clone RNA_annotation_pipeline into working directory
3. Activate conda env
- Do
module load minicanda
andconda activate [env_name]
4. Run setup.py
- Do
python3 setup.py install
(If meet "ValueError: bad marshal data", delete .pyc file may solve this problem.) find /home/[user_name] -name '*.pyc' -delete
5. Use bash script to submit job
- Download your genome file by
wget [URL of your genome file]
- Edit your command in the sbatch.sh file.
- Do
sbatch sbatch.sh
You can find more information about singularity here: https://scinet.usda.gov/guide/singularity
1. Pull docker image from docker hub
- Do
salloc
before you run singularity command - Do
SINGULARITY_CACHEDIR=[the directory for storaging blob files] singularity -d build rnannot.img docker://k2025242322/i5k_rna_seq_annotation_pipeline
[the directory for storaging blob files] can not under your home directory. You may not have enough quota for all blob files.
2. Edit bash script
- Download your genome file by
wget [URL of your genome file]
- Edit your command in the sbatch.sh file.
- example:
singularity exec [the PATH of rnannot.img] python3 /opt/RNA_repo/rnannot/download_sra_metadata.py -t 1049336 -o 1049336.tsv
wget [URL of your genome file]
singularity exec [the PATH of rnannot.img] python3 /opt/RNA_repo/rnannot/NAseq_annotate.py -i 1049336.tsv -g Edan07162013.scaffolds.fa.gz -a Edan
- To use fastq-dump on a fresh install, you need to enable remote access in the sratoolkit configuration.(https://ncbi.github.io/sra-tools/install_config.html)
- Run
vdb-config -i
- this should open up an interactive shell. Press 'M' to go to main page. Then, press 'E' to enable it. Last, press 's' and 'x' to save and exit configuration page.
- Run
- The input tsv should have at least five columns, including
Run
,Platform
,Model
,LibraryLayout
(header must be presented), anddownload_path
.Run
column represents the paths to the SRA files. You can use either relative path to your current directory or absolute path. To make less confusion, we recommned to use absolute path.Platform
column represents the sequencer's brand. We will recognizeILLUMINA
andABI_SOLID
(although we will not processABI_SOLID
) in this field, because it determines the adapters used in the pipeline withModel
.Model
column represents the sequencer's model. We will recongizeIllumina HiSeq ...
,Illumina MiSeq ...
, andIllumina Genome Analyzer II ...
, because it determines the adapters used in the pipeline withPlatform
. Don't forget that if you have any space in the name of the model. You need to escape them using quoting such as"Illumina Hiseq 2000"
or back slash.LibraryLayout
column represents what's the strategy of RNA-Seq experiment. It can be onlySINGLE
orPAIRED
.- Currently, the
ABI_SOLID
sequencer is not supported. - For paired-end layout,
Trimmomatic
will produces four fastq files: forward_paired, forward_unpaired, reverse_paired, reverse_unpaired, but we will only use the paired data in alignment (by HISAT2)
- Currently, the
download_path
column represents where we can download the SRA files.
- When using on server, make sure you use the
JAVA_TOOL_OPTIONS
environment to set the maximum memory usage likeexport JAVA_TOOL_OPTIONS="-Xmx2g"
when running the toolkit. You can also check an example here. - The format of the output name of bam file, indexed bam file, bigwig file and bed file is [gggsss] _ [assembly Name] _ RNA-Seq-alignments _ [date]. The name of the new folders created in apollo server is also based on this format. Changing this format may affect the downstream workflow(add_trackList.py and move_data.py).
python -m unittest -f tests/test_setup.py
python -m unittest -f tests/test_parser.py