Skip to content

With Django Datawatch you are able to implement arbitrary checks on data, review their status and even describe what to do to resolve them

License

Notifications You must be signed in to change notification settings

stefan-cardnell-rh/django-datawatch

 
 

Repository files navigation

PyPI version GitHub build status Coverage Status Open Source Love MIT Licence

Django Datawatch

With Django Datawatch you are able to implement arbitrary checks on data, review their status and even describe what to do to resolve them. Think of nagios/icinga for data.

Check execution backends

Synchronous

Will execute all tasks synchronously which is not recommended but the most simple way to get started.

Celery

Will execute the tasks asynchronously using celery as a task broker and executor. Requires celery 5.0.0 or later.

Other backends

Feel free to implement other task execution backends and send a pull request.

Install

$ pip install django-datawatch

Add django_datawatch to your INSTALLED_APPS

Celery beat database scheduler

If the datawatch scheduler should be run using the celery beat database scheduler, you need to install django_celery_beat.

Add django_datawatch.tasks.django_datawatch_scheduler to the CELERYBEAT_SCHEDULE of your app. This task should be executed every minute e.g. crontab(minute='*/1'), see example app.

Write a custom check

Create checks.py inside your module.

from datetime import datetime

from celery.schedules import crontab

from django_datawatch.datawatch import datawatch
from django_datawatch.base import BaseCheck, CheckResponse
from django_datawatch.models import Result


@datawatch.register
class CheckTime(BaseCheck):
    run_every = crontab(minute='*/5')  # scheduler will execute this check every 5 minutes

    def generate(self):
        yield datetime.now()

    def check(self, payload):
        response = CheckResponse()
        if payload.hour <= 7:
            response.set_status(Result.STATUS.ok)
        elif payload.hour <= 12:
            response.set_status(Result.STATUS.warning)
        else:
            response.set_status(Result.STATUS.critical)
        return response

    def get_identifier(self, payload):
        # payload will be our datetime object that we are getting from generate method
        return payload

    def get_payload(self, identifier):
        # as get_identifier returns the object we don't need to process it
        # we can return identifier directly
        return identifier

    def user_forced_refresh_hook(self, payload):
        payload.do_something()

.generate

Must yield payloads to be checked. The check method will then be called for every payload.

.check

Must return an instance of CheckResponse.

.get_identifier

Must return a unique identifier for the payload.

.user_forced_refresh_hook

A function that gets executed when the refresh is requested by a user through the ResultRefreshView.

This is used in checks that are purely based on triggers, e.g. when a field changes the test gets executed.

trigger check updates

Check updates for individual payloads can also be triggered when related datasets are changed. The map for update triggers is defined in the Check class' trigger_update attribute.

trigger_update = dict(subproduct=models_customer.SubProduct)

The key is a slug to define your trigger while the value is the model that issues the trigger when saved. You must implement a resolver function for each entry with the name of get__payload which returns the payload or multiple payloads (as a list) to check (same datatype as .check would expect or .generate would yield).

def get_subproduct_payload(self, instance):
    return instance.product

Exceptions

DatawatchCheckSkipException

raise this exception to skip current check. The result will not appear in the checks results.

Run your checks

A management command is provided to queue the execution of all checks based on their schedule. Add a crontab to run this command every minute and it will check if there's something to do.

$ ./manage.py datawatch_run_checks
$ ./manage.py datawatch_run_checks --slug=example.checks.UserHasEnoughBalance

Refresh your check results

A management command is provided to forcefully refresh all existing results for a check. This comes in handy if you changes the logic of your check and don't want to wait until the periodic execution or an update trigger.

$ ./manage.py datawatch_refresh_results
$ ./manage.py datawatch_refresh_results --slug=example.checks.UserHasEnoughBalance

Get a list of registered checks

$ ./manage.py datawatch_list_checks

Clean up your database

Remove the unnecessary check results and executions if you've removed the code for a check.

$ ./manage.py datawatch_clean_up

Settings

DJANGO_DATAWATCH_BACKEND = 'django_datawatch.backends.synchronous'
DJANGO_DATAWATCH_RUN_SIGNALS = True

DJANGO_DATAWATCH_BACKEND

You can chose the backend to run the tasks. Supported are 'django_datawatch.backends.synchronous' and 'django_datawatch.backends.celery'.

Default: 'django_datawatch.backends.synchronous'

DJANGO_DATAWATCH_RUN_SIGNALS

Use this setting to disable running post_save updates during unittests if required.

Default: True

celery task queue

Datawatch supported setting a specific queue in release < 0.4.0

With the switch to celery 4, you should use task routing to define the queue for your tasks, see http://docs.celeryproject.org/en/latest/userguide/routing.html

CONTRIBUTE

Dev environment

Please make sure that no other container is using port 8000 as this is the one you're install gets exposed to: http://localhost:8000/

Setup

We've included an example app to show how django_datawatch works. Start by launching the included docker container.

docker compose up -d

Then setup the example app environment.

docker compose run --rm app migrate
docker compose run --rm app loaddata example

The installed superuser is "example" with password "datawatch".

Run checks

Open http://localhost:8000/, log in and then go back to http://localhost:8000/. You'll be prompted with an empty dashboard. That's because we didn't run any checks yet. Let's enqueue an update.

docker compose run --rm app datawatch_run_checks --force

The checks for the example app are run synchronously and should be updated immediately. If you decide to switch to the celery backend, you should now start a celery worker to process the checks.

docker compose run --rm --entrypoint celery app -A example worker -l DEBUG

To execute the celery beat scheduler which runs the datawatch scheduler every minute, just run:

docker compose run --rm --entrypoint celery app -A example  beat --scheduler django_celery_beat.schedulers:DatabaseScheduler

You will see some failed check now after you refreshed the dashboard view.

Django Datawatch dashboard

Django Datawatch detail view

Run the tests

docker compose run --rm app test

Requirements upgrades

Check for upgradeable packages by running

docker compose up -d
docker compose exec app pip-check

Translations

Collect and compile translations for all registered locales

docker compose run --rm app makemessages --no-location --all
docker compose run --rm app compilemessages

Making a new release

bumpversion is used to manage releases.

Add your changes to the CHANGELOG, run

docker compose exec app bumpversion <major|minor|patch>

then push (including tags).

About

With Django Datawatch you are able to implement arbitrary checks on data, review their status and even describe what to do to resolve them

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 79.2%
  • HTML 20.0%
  • Dockerfile 0.8%