This is a baseline system for DCASE 2020 Challenge Task 2 "Unsupervised Detection of Anomalous Sounds for Machine Condition Monitoring".
http://dcase.community/challenge2020/task-unsupervised-detection-of-anomalous-sounds
The baseline system consists of two main scripts:
00_train.py
- This script trains models for each Machine Type by using the directory dev_data/<Machine_Type>/train/ or eval_data/<Machine_Type>/train/.
01_test.py
- This script makes csv files for each Machine ID including the anomaly scores for each wav file in the directory dev_data/<Machine_Type>/test/ or eval_data/<Machine_Type>/test/.
- The csv files will be stored in the directory result/.
- If the mode is "development", it also makes the csv files including the AUCs and pAUCs for each Machine ID.
Clone this repository from Github.
We will launch the datasets in three stages. So, please download the datasets in each stage:
- Development dataset
- Download
dev_data_<Machine_Type>.zip
from https://zenodo.org/record/3678171.
- Download
- Evaluation dataset for training
- After launch, download
eval_data_train_<Machine_Type>.zip
from https://zenodo.org/record/yyyyyy (not available until Apr. 1).
- After launch, download
- Evaluation dataset for test
- After launch, download
eval_data_test_<Machine_Type>.zip
from https://zenodo.org/record/zzzzzz (not available until June. 1).
- After launch, download
Unzip the downloaded files and make the directory structure as follows:
- ./dcase2020_task2_baseline
- /dev_data
- /ToyCar
- /train (Only normal data for all Machine IDs are included.)
- /normal_id_01_00000000.wav
- ...
- /normal_id_01_00000999.wav
- /normal_id_02_00000000.wav
- ...
- /normal_id_04_00000999.wav
- /test (Normal and anomaly data for all Machine IDs are included.)
- /normal_id_01_00000000.wav
- ...
- /normal_id_01_00000349.wav
- /anomaly_id_01_00000000.wav
- ...
- /anomaly_id_01_00000263.wav
- /normal_id_02_00000000.wav
- ...
- /anomaly_id_04_00000264.wav
- /train (Only normal data for all Machine IDs are included.)
- /ToyConveyor (The other Machine Types have the same directory structure as ToyCar.)
- /fan
- /pump
- /slider
- /valve
- /ToyCar
- /eval_data (after launch of the evaluation dataset)
- /ToyCar
- /ToyConveyor
- /fan
- /pump
- /slider
- /valve
- /00_train.py
- /01_test.py
- /common.py
- /keras_model.py
- /baseline.yaml
- /readme.md
- /dev_data
You can change the parameters for feature extraction and model definition by editing baseline.yaml
.
Run the training script 00_train.py
.
Use the option -d
for the development dataset dev_data/<Machine_Type>/train/.
$ python3.6 00_train.py -d
Options:
Argument | Description | |
---|---|---|
-h |
--help |
Application help. |
-v |
--version |
Show application version. |
-d |
--dev |
Mode for "development" |
-e |
--eval |
Mode for "evaluation" |
00_train.py
trains the models for each Machine Type and saves the trained models in the directory model/.
Run the test script 01_test.py
.
Use the option -d
for the development dataset dev_data/<Machine_Type>/test/.
$ python3.6 01_test.py -d
The options for 01_test.py
are the same as those for 00_train.py
.
01_test.py
calculates the anomaly scores for each wav file in the directory dev_data/<Machine_Type>/test/.
The csv files for each Machine ID including the anomaly scores will be stored in the directory result/.
If the mode is "development", the script also makes the csv files including the AUCs and pAUCs for each Machine ID.
You can check the anomaly scores in the csv files in the directory result/. Each anomaly score corresponds to a wav file in the directory dev_data/<Machine_Type>/test/:
anomaly_score_ToyCar_id_01.csv
normal_id_01_00000000.wav 6.95342025
normal_id_01_00000001.wav 6.363580014
normal_id_01_00000002.wav 7.048401741
normal_id_01_00000003.wav 6.151557502
normal_id_01_00000004.wav 6.450118248
normal_id_01_00000005.wav 6.368985477
...
Also, you can check the AUC and pAUC scores for each Machine ID:
result.csv
ToyCar
id AUC pAUC
1 0.828474 0.678514
2 0.866307 0.762236
3 0.639396 0.546659
4 0.869477 0.701461
Average 0.800914 0.672218
ToyConveyor
id AUC pAUC
1 0.793497 0.650428
2 0.64243 0.564437
3 0.744579 0.60488
Average 0.726835 0.606582
fan
id AUC pAUC
0 0.539607 0.492435
2 0.721866 0.554171
4 0.622098 0.527072
6 0.72277 0.529961
Average 0.651585 0.52591
pump
id AUC pAUC
0 0.670769 0.57269
2 0.609369 0.58037
4 0.8886 0.676842
6 0.734902 0.570175
Average 0.72591 0.600019
slider
id AUC pAUC
0 0.963315 0.818451
2 0.78809 0.628819
4 0.946011 0.739503
6 0.702247 0.490242
Average 0.849916 0.669254
valve
id AUC pAUC
0 0.687311 0.51349
2 0.674083 0.512281
4 0.744 0.515351
6 0.552833 0.482895
Average 0.664557 0.506004
After the evaluation dataset for training is launched, download and unzip it.
Move it to eval_data/<Machine_Type>/train/.
Run the training script 00_train.py
with the option -e
.
$ python3.6 00_train.py -e
Models are trained by using the evaluation dataset eval_data/<Machine_Type>/train/.
After the evaluation dataset for test is launched, download and unzip it.
Move it to eval_data/<Machine_Type>/test/.
Run the test script 01_test.py
with the option -e
.
$ python3.6 01_test.py -e
Anomaly scores are calculated using the evaluation dataset eval_data/<Machine_Type>/test/. The anomaly scores are stored as csv files in the directory result/. You can submit the csv files for the challenge.
We develop the source code on Ubuntu 16.04 LTS and 18.04 LTS. In addition, we checked performing on Ubuntu 16.04 LTS, 18.04 LTS, Cent OS 7, and Windows 10.
- p7zip-full
- Python == 3.6.5
- FFmpeg
- Keras == 2.1.6
- Keras-Applications == 1.0.8
- Keras-Preprocessing == 1.0.5
- matplotlib == 3.0.3
- numpy == 1.16.0
- PyYAML == 5.1
- scikit-learn == 0.20.2
- librosa == 0.6.0
- audioread == 2.1.5 (more)
- setuptools == 41.0.0
- tensorflow == 1.15.0
- tqdm == 4.23.4