-
Notifications
You must be signed in to change notification settings - Fork 34
/
prog_bpr_gru_spatial.py
375 lines (337 loc) · 15.6 KB
/
prog_bpr_gru_spatial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#!/usr/bin/env python36
# -*- coding: utf-8 -*-
"""
Created on 13/03/2018 3:30 PM
@author: Tangrizzly
"""
from __future__ import print_function
from collections import OrderedDict
import time
import datetime
import cPickle
import numpy as np
import os
import random
from public.BPR import OboBpr
from public.GRU import OboGru
from public.CA_RNN import OboCARNN
from public.GRU_Spatial import OboSpatialGru
from public.Global_Best import GlobalBest
from public.Load_Data_by_length import load_data, fun_data_buys_masks
from public.Load_Data_by_length import fun_random_neg_masks_tra, fun_random_neg_masks_tes, fun_compute_dist_neg
from public.Load_Data_by_length import fun_compute_distance, fun_acquire_prob
from public.Valuate import fun_predict_auc_recall_map_ndcg, fun_save_best_and_losses
__docformat__ = 'restructedtext en'
WHOLE = './poidata/'
PATH_f = os.path.join(WHOLE, 'Foursquare/sequence')
PATH_g = os.path.join(WHOLE, 'Gowalla/sequence')
PATH = PATH_f
def exe_time(func):
def new_func(*args, **args2):
name = func.__name__
start = datetime.datetime.now()
print("-- {%s} start: @ %ss" % (name, start))
back = func(*args, **args2)
end = datetime.datetime.now()
print("-- {%s} start: @ %ss" % (name, start))
print("-- {%s} end: @ %ss" % (name, end))
total = (end - start).total_seconds()
print("-- {%s} total: @ %.3fs = %.3fh" % (name, total, total / 3600.0))
return back
return new_func
class Params(object):
def __init__(self, p=None):
if not p:
t = 't'
assert 't' == t or 'v' == t or 's' == t
p = OrderedDict(
[
('dataset', 'Foursquare.txt'),
# ('dataset', 'Gowalla.txt'),
('mode', 'test' if 't' == t else 'valid' if 'v' == t else 's'),
('load_epoch', 0),
('save_per_epoch', 100),
('split', -2 if 'v' == t else -1),
('at_nums', [5, 10, 15, 20]),
('epochs', 101),
('latent_size', 20),
('alpha', 0.01),
('lambda', 0.001),
('loss_weight', [0.5, 0.5]),
('dd', 200),
('UD', 40),
('mini_batch', 0),
('gru', 0),
('batch_size_train', 1),
('batch_size_test', 32),
])
for i in p.items():
print(i)
dist_num = int(p['UD'] * 1000 / p['dd']) # 1520 = 38*1000/25。idx=[0, 1519+1]
[(user_num, item_num), pois_cordis, (tra_buys, tes_buys), (tra_dist, tes_dist)] = \
load_data(os.path.join(PATH, p['dataset']), p['mode'], p['split'], p['dd'], dist_num)
tra_buys_masks, tra_dist_masks, tra_masks = fun_data_buys_masks(tra_buys, tra_dist, [item_num], [dist_num])
tes_buys_masks, tes_dist_masks, tes_masks = fun_data_buys_masks(tes_buys, tes_dist, [item_num], [dist_num])
tra_buys_neg_masks = fun_random_neg_masks_tra(item_num, tra_buys_masks)
tes_buys_neg_masks = fun_random_neg_masks_tes(item_num, tra_buys_masks, tes_buys_masks)
tra_dist_neg_masks = fun_compute_dist_neg(tra_buys_masks, tra_masks, tra_buys_neg_masks, pois_cordis, p['dd'], dist_num)
usrs_last_poi_to_all_intervals = fun_compute_distance(tra_buys_masks, tra_masks, pois_cordis, p['dd'], dist_num)
self.p = p
self.user_num, self.item_num, self.dist_num = user_num, item_num, dist_num
self.pois_cordis = pois_cordis
self.tra_buys_masks, self.tra_masks, self.tra_buys_neg_masks = tra_buys_masks, tra_masks, tra_buys_neg_masks
self.tes_buys_masks, self.tes_masks, self.tes_buys_neg_masks = tes_buys_masks, tes_masks, tes_buys_neg_masks
self.tra_dist_masks = tra_dist_masks
self.tes_dist_masks = tes_dist_masks
self.tra_dist_neg_masks = tra_dist_neg_masks
self.ulptai = usrs_last_poi_to_all_intervals
def build_model_one_by_one(self, flag=0):
"""
建立模型对象
:param flag: 参数变量、数据
:return:
"""
print('Building the model one_by_one ...')
p = self.p
size = p['latent_size']
if 0 == flag:
model = OboBpr(
train=[self.tra_buys_masks, self.tra_masks, self.tra_buys_neg_masks],
test= [self.tes_buys_masks, self.tes_masks, self.tes_buys_neg_masks],
alpha_lambda=[p['alpha'], p['lambda']],
n_user=self.user_num,
n_item=self.item_num,
n_in=size,
n_hidden=size)
elif 1 == flag:
model = OboGru(
train=[self.tra_buys_masks, self.tra_masks, self.tra_buys_neg_masks],
test= [self.tes_buys_masks, self.tes_masks, self.tes_buys_neg_masks],
alpha_lambda=[p['alpha'], p['lambda']],
n_user=self.user_num,
n_item=self.item_num,
n_in=size,
n_hidden=size)
elif 2 == flag:
model = OboSpatialGru(
train=[self.tra_buys_masks, self.tra_masks, self.tra_buys_neg_masks],
test= [self.tes_buys_masks, self.tes_masks, self.tes_buys_neg_masks],
dist= [self.tra_dist_masks, self.tes_dist_masks, self.tra_dist_neg_masks],
alpha_lambda=[p['alpha'], p['lambda']],
n_user=self.user_num,
n_item=self.item_num,
n_dists=[self.dist_num, 1.0*p['dd']/1000],
n_in=size, # 总的input是2 * size。
n_hidden=size)
else:
model = OboCARNN(
train=[self.tra_buys_masks, self.tra_masks, self.tra_buys_neg_masks],
test= [self.tes_buys_masks, self.tes_masks, self.tes_buys_neg_masks],
dist= [self.tra_dist_masks, self.tes_dist_masks, self.tra_dist_neg_masks],
alpha_lambda=[p['alpha'], p['lambda']],
n_user=self.user_num,
n_item=self.item_num,
n_dists=[self.dist_num, 1.0*p['dd']/1000],
n_in=size,
n_hidden=size,
ulptai=self.ulptai)
model_name = model.__class__.__name__
print('\t the current Class name is: {val}'.format(val=model_name))
return model, model_name
def compute_start_end(self, flag):
"""
获取mini-batch的各个start_end(np.array类型,一组连续的数值)
:param flag: 'train', 'test'
:return: 各个start_end组成的list
"""
assert flag in ['train', 'test', 'test_auc']
if 'train' == flag:
size = self.p['batch_size_train']
elif 'test' == flag:
size = self.p['batch_size_test'] # test: top-k and acquire user vector
else:
size = self.p['batch_size_test'] * 10 # test: auc
user_num = self.user_num
rest = (user_num % size) > 0
n_batches = np.minimum(user_num // size + rest, user_num)
batch_idxs = np.arange(n_batches, dtype=np.int32)
starts_ends = []
for bidx in batch_idxs:
start = bidx * size
end = np.minimum(start + size, user_num)
start_end = np.arange(start, end, dtype=np.int32)
starts_ends.append(start_end)
return batch_idxs, starts_ends
def train_valid_or_test(pas):
"""
主程序
:return:
"""
# 建立参数、数据、模型、模型最佳值
p = pas.p
model, model_name = pas.build_model_one_by_one(flag=p['gru'])
best = GlobalBest(at_nums=p['at_nums']) # 存放最优数据
_, starts_ends_tes = pas.compute_start_end(flag='test')
_, starts_ends_auc = pas.compute_start_end(flag='test_auc')
# 直接取出来部分变量,后边就不用加'pas.'了。
user_num, item_num, dist_num = pas.user_num, pas.item_num, pas.dist_num
tra_buys_masks, tra_masks, tra_buys_neg_masks = pas.tra_buys_masks, pas.tra_masks, pas.tra_buys_neg_masks
tes_buys_masks, tes_masks, tes_buys_neg_masks = pas.tes_buys_masks, pas.tes_masks, pas.tes_buys_neg_masks
dd = p['dd']
pois_cordis = pas.pois_cordis
ulptai = pas.ulptai
del pas
ini_epoch = 0
if 2 == p['gru']:
ini_epoch = p['load_epoch']
if p['load_epoch'] != 0:
print('Loading model ...')
m_path = './model/' + p['dataset'] + '/' + model_name + '_size' + \
str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(
p['load_epoch'])
with open(m_path, 'rb') as f:
loaded_objects = cPickle.load(f)
model.load_params(loaded_objects)
ini_epoch = p['load_epoch'] + 1
# 主循环
losses = []
times0, times1, times2, times3 = [], [], [], []
for epoch in np.arange(ini_epoch, p['epochs']):
print("Epoch {val} ==================================".format(val=epoch))
if epoch > 0:
tra_buys_neg_masks = fun_random_neg_masks_tra(item_num, tra_buys_masks)
tes_buys_neg_masks = fun_random_neg_masks_tes(item_num, tra_buys_masks, tes_buys_masks)
if p['gru'] in [0, 1]:
model.update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks)
else:
tra_dist_neg_masks = fun_compute_dist_neg(tra_buys_masks, tra_masks, tra_buys_neg_masks, pois_cordis, dd, dist_num)
model.s_update_neg_masks(tra_buys_neg_masks, tes_buys_neg_masks, tra_dist_neg_masks)
# ----------------------------------------------------------------------------------------------------------
print("\tTraining ...")
t0 = time.time()
loss = 0.
ls = [0, 0]
total_ls = []
random.seed(str(123 + epoch))
user_idxs_tra = np.arange(user_num, dtype=np.int32)
random.shuffle(user_idxs_tra)
if 0 == p['gru']:
for uidx in user_idxs_tra:
tra = tra_buys_masks[uidx]
neg = tra_buys_neg_masks[uidx]
for i in np.arange(sum(tra_masks[uidx])):
loss += model.train(uidx, [tra[i], neg[i]])
elif 1 == p['gru'] or 3 == p['gru']:
for uidx in user_idxs_tra:
loss += model.train(uidx)
else:
for uidx in user_idxs_tra:
los, a, b, ls = model.train(uidx)
loss += los
a_b = [a, b]
a_b.extend(ls)
total_ls.append(a_b)
rnn_l2_sqr = model.l2.eval()
def cut2(x):
return '%0.2f' % x
print('\t\tsum_loss = {val} = {v1} + {v2}'.format(val=loss + rnn_l2_sqr, v1=loss, v2=rnn_l2_sqr))
losses.append('{v1}'.format(v1=int(loss + rnn_l2_sqr)))
# ls = model.loss_weight
print('\t\tloss_weight = {v1}, {v2}'.format(v1=ls[0], v2=ls[1]))
t1 = time.time()
times0.append(t1 - t0)
# ----------------------------------------------------------------------------------------------------------
print("\tPredicting ...")
if 0 == p['gru']:
model.update_trained_items()
model.update_trained_users()
elif 1 == p['gru']:
model.update_trained_items()
all_hus = []
for start_end in starts_ends_tes:
sub_all_hus = model.predict(start_end)
all_hus.extend(sub_all_hus)
model.update_trained_users(all_hus)
elif 2 == p['gru']:
model.update_trained_items()
model.update_trained_dists()
all_hus = []
all_sus = []
for start_end in starts_ends_tes:
[sub_all_hus, sub_all_sus] = model.predict(start_end)
all_hus.extend(sub_all_hus)
all_sus.extend(sub_all_sus)
probs = fun_acquire_prob(all_sus, ulptai, dist_num)
model.update_trained_users(all_hus)
model.update_prob(probs)
else:
model.update_trained_items()
model.update_trained_dists()
all_hus = []
for start_end in starts_ends_tes:
sub_all_hus = model.predict(start_end)
all_hus.extend(sub_all_hus)
model.update_trained_users(all_hus)
t2 = time.time()
times1.append(t2 - t1)
fun_predict_auc_recall_map_ndcg(
p, model, best, epoch, starts_ends_auc, starts_ends_tes, tes_buys_masks, tes_masks)
best.fun_print_best(epoch)
t3 = time.time()
times2.append(t3-t2)
print('\tavg. time (train, user, test): %0.0fs,' % np.average(times0),
'%0.0fs,' % np.average(times1), '%0.0fs' % np.average(times2),
'| alpha, lam: {v1}'.format(v1=', '.join([str(lam) for lam in [p['alpha'], p['lambda']]])),
'| model: {v1}'.format(v1=model_name))
# ----------------------------------------------------------------------------------------------------------
if epoch == p['epochs'] - 1:
print("\tBest and losses saving ...")
path = os.path.join(os.path.split(__file__)[0], '..', 'Results_best_and_losses', PATH.split('/')[-2])
fun_save_best_and_losses(path, model_name, epoch, p, best, losses)
if 2 == p['gru']:
size = p['latent_size']
fil_name = 'size' + str(size) + 'UD' + str(p['UD']) + 'dd' + str(p['dd']) + 'loss.txt'
fil = os.path.join(path, fil_name)
np.savetxt(fil, total_ls)
if 2 == p['gru'] and epoch % p['save_per_epoch'] == 0 and epoch != 0:
m_path = './model/' + p['dataset'] + '/' + model_name + '_size' + \
str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(epoch)
with open(m_path, 'wb') as file:
save_model = [model.loss_weight.get_value(), model.wd.get_value(), model.lt.get_value(), model.di.get_value(),
model.ui.get_value(), model.wh.get_value(), model.bi.get_value(), model.vs.get_value(),
model.bs.get_value()]
cPickle.dump(save_model, file, protocol=cPickle.HIGHEST_PROTOCOL)
for i in p.items():
print(i)
print('\t the current Class name is: {val}'.format(val=model_name))
def cal_s(pas):
p = pas.p
model, model_name = pas.build_model_one_by_one(flag=p['gru'])
_, starts_ends_tes = pas.compute_start_end(flag='test')
user_num, dist_num = pas.user_num, pas.dist_num
ulptai = pas.ulptai
del pas
m_path = './model/' + p['dataset'] + '/' + model_name + '_size' +\
str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(p['load_epoch'])
print('Loading model ...')
with open(m_path, 'rb') as f:
loaded_objects = cPickle.load(f)
model.load_params(loaded_objects)
print("\tPredicting ...")
model.update_trained_items()
model.update_trained_dists()
all_sus = []
for start_end in starts_ends_tes:
[_, sub_all_sus] = model.predict(start_end)
all_sus.extend(sub_all_sus)
np.save('./Lmdd/' + p['dataset'] + '_size' + str(p['latent_size']) + '_UD' + str(p['UD']) + '_dd' + str(p['dd']) + '_epoch' + str(p['load_epoch']) + 'last1',
all_sus)
@exe_time
def main():
pas = Params()
if pas.p['mode'] == 's':
cal_s(pas)
else:
train_valid_or_test(pas)
if '__main__' == __name__:
main()