The datasets are from the work "Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, Nadia Magnenat-Thalmann: Time-aware point-of-interest recommendation. SIGIR 2013.", and can be downloaded from this link :
- Foursquare
- Gowalla
- BPR
- GRU
- FPMC-LR: Yang, Rui, Run Zhao, and Dong Wang. "Successive Point-of-Interest Recommendation in Intelligent Business Area." (2015).
- PRME: Feng, Shanshan, et al. "Personalized Ranking Metric Embedding for Next New POI Recommendation." IJCAI. Vol. 15. 2015.
- Poi2Vec: Feng, Shanshan, et al. "POI2Vec: Geographical Latent Representation for Predicting Future Visitors." AAAI. 2017.
- (Unmodified) GEOIE: Wang, Hao, et al. "Exploiting POI-Specific Geographical Influence for Point-of-Interest Recommendation." IJCAI. 2018.
- Distance2Pre: Q Cui, Y Tang, S Wu, L Wang. "Distance2Pre: Predict the Next Point-of-Interest via Mining Personalized Spatial Preference". 2019.
- Download datasets to
./poidata/Foursquare
or./poidata/Gowalla
respectively - Run the file
./poidata/extract_whole_user_buys.py
to extract poi sequences - Run the file
prog_xxx.py
to train specific model.