Skip to content

Machine Learning plugin for the Unreal Engine, encapsulating calls to remote python servers running e.g. Tensorflow/Pytorch.

License

Notifications You must be signed in to change notification settings

tejaswingm/machine-learning-remote-ue4

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

machine-learning-remote-ue4

A Machine Learning (ML) plugin for the Unreal Engine, encapsulating calls to remote python servers running python ML libraries like Tensorflow or Pytorch. Depends on server complement repository: https://github.com/getnamo/ml-remote-server.

GitHub release Github All Releases

Should have the same api as tensorflow-ue4, but with freedom to run a host server on platform of choice (e.g. remote win/linux/mac instances) and without a hard bind to the tensorflow library.

Unreal Machine Learning Plugin Variants

Want to run tensorflow or pytorch on a remote (or local) python server?

Want to use tensorflow python api with a python instance embedded in your unreal engine project?

Want native tensorflow inference? (WIP)

Quick Install & Setup

  1. Install and setup https://github.com/getnamo/ml-remote-server on your target backend (can be a local folder), or setup the one embedded in plugin.
  2. Download Latest Release
  3. Create new or choose project.
  4. Browse to your project folder (typically found at Documents/Unreal Project/{Your Project Root})
  5. Copy Plugins folder into your Project root.
  6. Plugin should be now ready to use. Remember to startup your server when using this plugin.

How to use

Blueprint API

Add a MachineLearningRemote component to an actor of choice

Change server endpoint and DefaultScript to fit your use case. DefaultScript is the file name of your ML script which is placed in your <server>/scripts folder. See https://github.com/getnamo/machine-learning-remote-ue4#python-api for example scripts.

In your script the on_setup and if self.should_train_on_start is true on_begin_training gets called. When your script has trained or it is otherwise ready, you can send inputs to it using SendSIOJsonInput or other variants (string/raw).

Your inputs will be processed on your script side and any value you return from there will be sent back and returned in ResultData as USIOJsonValue in your latent callback.

Other input variants

See https://github.com/getnamo/machine-learning-remote-ue4/blob/master/Source/MachineLearningRemote/Public/MachineLearningRemoteComponent.h for all variants

Custom Function

Change the FunctionName parameter in the SendSIOJsonInput to call a different function name in your script. This name will be used verbatim.

Python API

These scripts should be placed in your <server>/scripts folder. If a matching script is defined in your MachineLearningRemote->DefaultScript property it should load on connect.

Keep in mind that tensorflow is optional and used as an illustrative example of ML, you can use any other valid python library e.g. pytorch instead without issue.

See https://github.com/getnamo/ml-remote-server/tree/master/scripts for additional examples. See https://github.com/getnamo/tensorflow-ue4#python-api for more detailed api examples.

empty_example

Bare bones API example.

import tensorflow as tf
from mlpluginapi import MLPluginAPI

class ExampleAPI(MLPluginAPI):

	#optional api: setup your model for training
	def on_setup(self):
		pass
		
	#optional api: parse input object and return a result object, which will be converted to json for UE4
	def on_json_input(self, input):
		result = {}
		return result

	#optional api: start training your network
	def on_begin_training(self):
		pass


#NOTE: this is a module function, not a class function. Change your CLASSNAME to reflect your class
#required function to get our api
def get_api():
	#return CLASSNAME.getInstance()
	return ExampleAPI.get_instance()

add_example

Super basic example showing how to add using the tensorflow library.

import tensorflow as tf
import unreal_engine as ue #for remote logging only, this is a proxy import to enable same functionality as local variants
from mlpluginapi import MLPluginAPI

class ExampleAPI(MLPluginAPI):

	#expected optional api: setup your model for training
	def on_setup(self):
		self.sess = tf.InteractiveSession()
		#self.graph = tf.get_default_graph()

		self.a = tf.placeholder(tf.float32)
		self.b = tf.placeholder(tf.float32)

		#operation
		self.c = self.a + self.b

		ue.log('setup complete')
		pass
		
	#expected optional api: parse input object and return a result object, which will be converted to json for UE4
	def on_json_input(self, json_input):
		
		ue.log(json_input)

		feed_dict = {self.a: json_input['a'], self.b: json_input['b']}

		raw_result = self.sess.run(self.c, feed_dict)

		ue.log('raw result: ' + str(raw_result))

		return {'c':raw_result.tolist()}

	#custom function to change the op
	def change_operation(self, type):
		if(type == '+'):
			self.c = self.a + self.b

		elif(type == '-'):
			self.c = self.a - self.b
		ue.log('operation changed to ' + type)


	#expected optional api: start training your network
	def on_begin_training(self):
		pass
    
#NOTE: this is a module function, not a class function. Change your CLASSNAME to reflect your class
#required function to get our api
def get_api():
	#return CLASSNAME.get_instance()
	return ExampleAPI.get_instance()

mnist_simple

One of the most basic ML examples using tensorflow to train a softmax mnist recognizer.

#Converted to ue4 use from: https://www.tensorflow.org/get_started/mnist/beginners
#mnist_softmax.py: https://github.com/tensorflow/tensorflow/blob/r1.1/tensorflow/examples/tutorials/mnist/mnist_softmax.py

# Import data
from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf
import unreal_engine as ue
from mlpluginapi import MLPluginAPI

import operator

class MnistSimple(MLPluginAPI):
	
	#expected api: storedModel and session, json inputs
	def on_json_input(self, jsonInput):
		#expect an image struct in json format
		pixelarray = jsonInput['pixels']
		ue.log('image len: ' + str(len(pixelarray)))

		#embedd the input image pixels as 'x'
		feed_dict = {self.model['x']: [pixelarray]}

		result = self.sess.run(self.model['y'], feed_dict)

		#convert our raw result to a prediction
		index, value = max(enumerate(result[0]), key=operator.itemgetter(1))

		ue.log('max: ' + str(value) + 'at: ' + str(index))

		#set the prediction result in our json
		jsonInput['prediction'] = index

		return jsonInput

	#expected api: no params forwarded for training? TBC
	def on_begin_training(self):

		ue.log("starting mnist simple training")

		self.scripts_path = ue.get_content_dir() + "Scripts"
		self.data_dir = self.scripts_path + '/dataset/mnist'

		mnist = input_data.read_data_sets(self.data_dir)

		# Create the model
		x = tf.placeholder(tf.float32, [None, 784])
		W = tf.Variable(tf.zeros([784, 10]))
		b = tf.Variable(tf.zeros([10]))
		y = tf.matmul(x, W) + b

		# Define loss and optimizer
		y_ = tf.placeholder(tf.int64, [None])

		# The raw formulation of cross-entropy,
		#
		#   tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
		#                                 reduction_indices=[1]))
		#
		# can be numerically unstable.
		#
		# So here we use tf.losses.sparse_softmax_cross_entropy on the raw
		# outputs of 'y', and then average across the batch.
		cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y)
		train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

		#update session for this thread
		self.sess = tf.InteractiveSession()
		tf.global_variables_initializer().run()

		# Train
		for i in range(1000):
			batch_xs, batch_ys = mnist.train.next_batch(100)
			self.sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
			if i % 100 == 0:
				ue.log(i)
				if(self.should_stop):
					ue.log('early break')
					break 

		# Test trained model
		correct_prediction = tf.equal(tf.argmax(y, 1), y_)
		accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
		finalAccuracy = self.sess.run(accuracy, feed_dict={x: mnist.test.images,
										  y_: mnist.test.labels})
		ue.log('final training accuracy: ' + str(finalAccuracy))
		
		#return trained model
		self.model = {'x':x, 'y':y, 'W':W,'b':b}

		#store optional summary information
		self.summary = {'x':str(x), 'y':str(y), 'W':str(W), 'b':str(b)}

		self.stored['summary'] = self.summary
		return self.stored

#required function to get our api
def get_api():
	#return CLASSNAME.get_instance()
	return MnistSimple.get_instance()

C++ API

Available since 0.3.1.

Same as blueprint API except for one additional callback variant. Use the lambda overloaded functions e.g. assuming you have a component defined as

UMachineLearningRemoteComponent* MLComponent; //NB: this needs to be allocated with NewObject or CreateDefaultSubobject 

SendRawInput

//Let's say you want to send some raw data
TArray<float> InputData;
//... fill

MLComponent->SendRawInput(InputData, [this](TArray<float>& ResultData)
{
	//Now we got our results back, do something with them here
}, FunctionName);

SendStringInput

Keep in mind that if you're using USIOJConvert utilities you'll need to add SIOJson, and Json as dependency modules in your project build.cs.

PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore", "Json", "SIOJson" });

Sending just a String

FString InputString = TEXT("Some Data");

MLComponent->SendStringInput(InputString, [this](const FString& ResultData)
{
	//e.g. just print the result
	UE_LOG(LogTemp, Log, TEXT("Got some results: %s"), *ResultData);
}, FunctionName);

A custom JsonObject

//Make an object {"myKey":"myValue"}
TSharedPtr<FJsonObject> JsonObject = MakeShareable(new FJsonObject);
JsonObject->SetStringField(TEXT("myKey"), TEXT("myValue"));
FString InputString = USIOJConvert::ToJsonString(JsonObject);

MLComponent->SendStringInput(InputString, [this](const FString& ResultData)
{
	//assuming you got a json string response we could query it, e.g. assume {"someNumber":5}
	TSharedPtr<FJsonObject> JsonObject = USIOJConvert::ToJsonObject(ResultData);
	double MyNumber = JsonObject->GetNumberField("someNumber");
	
	//do something with your number result
}, FunctionName);

Structs via Json

//Let's say you want to send some struct data in json format

USTRUCT()
struct FTestCppStruct
{
	GENERATED_BODY()

	UPROPERTY()
	int32 Index;

	UPROPERTY()
	float SomeNumber;

	UPROPERTY()
	FString Name;
};

//...

FTestCppStruct TestStruct;
TestStruct.Name = TEXT("George");
TestStruct.Index = 5;
TestStruct.SomeNumber = 5.123f;
FString StructJsonString = USIOJConvert::ToJsonString(USIOJConvert::ToJsonObject(FTestCppStruct::StaticStruct(), &TestStruct));

//In this example we're using the same struct type for the result, but you could use a different one or custom Json
FTestCppStruct ResultStruct;

MLComponent->SendStringInput(StructJsonString, [this, &ResultStruct](const FString& ResultData)
{
	//do something with the result, let's say we we have another struct of same type and we'd like to fill it with the results
	USIOJConvert::JsonObjectToUStruct(USIOJConvert::ToJsonObject(ResultData), FTestCppStruct::StaticStruct(), &ResultStruct);
}, FunctionName);

About

Machine Learning plugin for the Unreal Engine, encapsulating calls to remote python servers running e.g. Tensorflow/Pytorch.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 91.3%
  • C# 8.7%