-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Nilaykumar K Patel <[email protected]>
- Loading branch information
1 parent
6a463c1
commit b2e0083
Showing
5 changed files
with
296 additions
and
105 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple, List | ||
import itertools | ||
import random | ||
import torch | ||
import math | ||
|
||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
|
||
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: | ||
[pad_h, pad_w] = test_vector["padding"] | ||
[_, _, kernel_h, kernel_w] = test_vector["shape"] | ||
if 2 * pad_h > kernel_h or 2 * pad_w > kernel_w: | ||
return True, "double of padding can not be greater than kernel size." | ||
return False, None | ||
|
||
|
||
def mesh_device_fixture(): | ||
num_devices = ttnn.GetNumPCIeDevices() | ||
# As of now take device id as 0. | ||
device_id = 0 | ||
assert device_id < num_devices, "CreateDevice not supported for non-mmio device" | ||
device = ttnn.CreateDevice(device_id=device_id, l1_small_size=32768) | ||
ttnn.SetDefaultDevice(device) | ||
|
||
device_name = "Unknown" | ||
if ttnn.device.is_grayskull(device): | ||
device_name = "grayskull" | ||
elif ttnn.device.is_wormhole_b0(device): | ||
device_name = "wormhole_b0" | ||
yield device, device_name | ||
|
||
ttnn.close_device(device) | ||
|
||
|
||
def run_max_pool2d( | ||
in_n, | ||
in_c, | ||
in_h, | ||
in_w, | ||
kernel_h, | ||
kernel_w, | ||
stride_h, | ||
stride_w, | ||
pad_h, | ||
pad_w, | ||
dilation_h, | ||
dilation_w, | ||
dtype, | ||
device, | ||
sharding=ttnn.TensorMemoryLayout.HEIGHT_SHARDED, | ||
ceil_mode=False, | ||
): | ||
act_shape = [in_n, in_c, in_h, in_w] | ||
kernel_size = [kernel_h, kernel_w] | ||
stride = [stride_h, stride_h] | ||
padding = [pad_h, pad_w] | ||
dilation = [dilation_h, dilation_w] | ||
|
||
out_h = math.floor((in_h + 2 * pad_h - (dilation_h * kernel_h - 1) - 1) / stride_h) + 1 | ||
out_w = math.floor((in_w + 2 * pad_w - (dilation_w * kernel_w - 1) - 1) / stride_w) + 1 | ||
|
||
torch.manual_seed(0) | ||
torch.set_printoptions(precision=3, sci_mode=False, linewidth=500, threshold=10000, edgeitems=32) | ||
|
||
act = torch.randn(act_shape, dtype=torch.bfloat16) | ||
act_shape = (1, 1, in_n * in_h * in_w, in_c) | ||
act_permuted = torch.permute(act, (0, 2, 3, 1)) | ||
act_reshaped = act_permuted.reshape(act_shape) | ||
|
||
if dtype == ttnn.bfloat8_b: | ||
ttact = ttnn.from_torch(act_reshaped, dtype, layout=ttnn.TILE_LAYOUT) | ||
else: | ||
ttact = ttnn.from_torch(act_reshaped, dtype) | ||
|
||
ttact_device = ttnn.to_device(ttact, device) | ||
start_time = start_measuring_time() | ||
output = ttnn.max_pool2d( | ||
input_tensor=ttact_device, | ||
batch_size=in_n, | ||
input_h=in_h, | ||
input_w=in_w, | ||
channels=in_c, | ||
kernel_size=[kernel_h, kernel_w], | ||
stride=[stride_h, stride_w], | ||
padding=[pad_h, pad_w], | ||
dilation=[dilation_h, dilation_w], | ||
memory_config=None, | ||
applied_shard_scheme=sharding, | ||
) | ||
|
||
output_host = output.cpu() | ||
output_pytorch_padded = torch.Tensor(ttnn.to_torch(output_host)) | ||
output_pytorch = output_pytorch_padded[:, :, :, :in_c] | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
## reference | ||
golden_pytorch = torch.nn.MaxPool2d( | ||
kernel_size, | ||
stride=stride, | ||
padding=padding, | ||
dilation=dilation, | ||
return_indices=False, | ||
ceil_mode=False, | ||
)(act) | ||
|
||
golden_shape = golden_pytorch.shape | ||
output_pytorch = output_pytorch.reshape(golden_shape[0], golden_shape[2], golden_shape[3], golden_shape[1]) | ||
output_pytorch = torch.permute(output_pytorch, (0, 3, 1, 2)) ## N, C, H, W | ||
|
||
atol, rtol = torch.testing._comparison.default_tolerances(torch.bfloat16) | ||
if dtype == ttnn.bfloat8_b: | ||
atol = 0.35 | ||
|
||
## test for equivalance | ||
allclose = torch.allclose(output_pytorch, golden_pytorch, atol=atol) | ||
isequal = torch.equal(output_pytorch, golden_pytorch) | ||
|
||
assert allclose, " Reference and output tensor are not close" | ||
if dtype == ttnn.bfloat16: | ||
assert isequal, " Reference and output tensor are not equal" | ||
|
||
# check pcc and return | ||
return [check_with_pcc(output_pytorch, golden_pytorch, pcc=0.998), e2e_perf] |
68 changes: 68 additions & 0 deletions
68
tests/sweep_framework/sweeps/max_pool2d/full/max_pool2d_large_dims.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from tests.sweep_framework.sweep_utils.max_pool2d_common import run_max_pool2d, mesh_device_fixture, invalidate_vector | ||
|
||
# Total test cases | ||
# max_pool2d_full_sweep_suite_large_dims = 17 * 4 * 4 * 3 * 4 * 2 = 6528 | ||
# There can be invalid test cases in here based on conditions in invalidate_vector. | ||
|
||
parameters = { | ||
"max_pool2d_full_sweep_suite_large_dims": { | ||
"kernel_size": [[j for i in range(2)] for j in range(15, 32)], # square kernels only | ||
"padding": [[7, 7], [8, 8], [15, 15], [16, 16]], | ||
"stride": [[7, 7], [8, 8], [15, 15], [16, 16]], | ||
"sharding": [ | ||
ttnn.TensorMemoryLayout.HEIGHT_SHARDED, | ||
ttnn.TensorMemoryLayout.WIDTH_SHARDED, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
], | ||
"shape": [ | ||
[4, 16, 1056, 160], | ||
[1, 32, 599, 503], # prime number in height and width | ||
[7, 31, 512, 512], # prime numbers in batch size and channels | ||
[3, 17, 503, 503], # prime numbers for all | ||
], | ||
"dtype": [ttnn.bfloat16, ttnn.bfloat8_b], | ||
} | ||
} | ||
|
||
|
||
def run( | ||
kernel_size, | ||
padding, | ||
stride, | ||
sharding, | ||
shape, | ||
dtype, | ||
*, | ||
device, | ||
): | ||
[in_n, in_c, in_h, in_w] = shape | ||
[kernel_h, kernel_w] = kernel_size | ||
[stride_h, stride_w] = stride | ||
[pad_h, pad_w] = padding | ||
[dilation_h, dilation_w] = [1, 1] # dilation is fix | ||
|
||
return run_max_pool2d( | ||
in_n, | ||
in_c, | ||
in_h, | ||
in_w, | ||
kernel_h, | ||
kernel_w, | ||
stride_h, | ||
stride_w, | ||
pad_h, | ||
pad_w, | ||
dilation_h, | ||
dilation_w, | ||
dtype, | ||
device, | ||
sharding, | ||
ceil_mode=False, | ||
) |
76 changes: 76 additions & 0 deletions
76
tests/sweep_framework/sweeps/max_pool2d/full/max_pool2d_params.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from tests.sweep_framework.sweep_utils.max_pool2d_common import run_max_pool2d, mesh_device_fixture, invalidate_vector | ||
|
||
# Shapes are taken from existing unit tests | ||
input_shapes = [ | ||
[[1, 256, 56, 56]], | ||
[[1, 512, 10, 10]], | ||
[[2, 32, 23, 23]], | ||
[[4, 16, 1056, 160]], | ||
[[8, 4096, 10, 16]], | ||
[[16, 16, 528, 80]], | ||
] | ||
|
||
# Total test cases | ||
# max_pool2d_full_sweep_suite_params_{idx} = 13 * 7 * 7 * 3 * 6(input_shapes) * 2 * 2 = 45864 | ||
# There can be invalid test cases in here based on conditions in invalidate_vector. | ||
|
||
parameters = { | ||
f"max_pool2d_full_sweep_suite_params_{idx}": { | ||
"kernel_size": [[j for i in range(2)] for j in range(2, 15)], # square kernels only | ||
"padding": [[j for i in range(2)] for j in range(1, 8)], | ||
"stride": [[j for i in range(2)] for j in range(1, 8)], | ||
"sharding": [ | ||
ttnn.TensorMemoryLayout.HEIGHT_SHARDED, | ||
ttnn.TensorMemoryLayout.WIDTH_SHARDED, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
], | ||
"shape": shape_, | ||
"dtype": [ttnn.bfloat16, ttnn.bfloat8_b], | ||
"ceil_mode": [True, False], | ||
} | ||
for idx, shape_ in enumerate(input_shapes) | ||
} | ||
|
||
|
||
def run( | ||
kernel_size, | ||
padding, | ||
stride, | ||
sharding, | ||
shape, | ||
dtype, | ||
ceil_mode=False, | ||
*, | ||
device, | ||
): | ||
[in_n, in_c, in_h, in_w] = shape | ||
[kernel_h, kernel_w] = kernel_size | ||
[stride_h, stride_w] = stride | ||
[pad_h, pad_w] = padding | ||
[dilation_h, dilation_w] = [1, 1] # dilation is fix | ||
|
||
return run_max_pool2d( | ||
in_n, | ||
in_c, | ||
in_h, | ||
in_w, | ||
kernel_h, | ||
kernel_w, | ||
stride_h, | ||
stride_w, | ||
pad_h, | ||
pad_w, | ||
dilation_h, | ||
dilation_w, | ||
dtype, | ||
device, | ||
sharding, | ||
ceil_mode, | ||
) |
Oops, something went wrong.