Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bfilipovic tt/eltwise unary sweeps 1 #16852

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions tests/sweep_framework/sweeps/eltwise/unary/asin/asin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 256, 256], [1, 1, 32, 32], 16)
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 16)
+ gen_shapes([32, 32], [256, 256], [32, 32], 32),
"input_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_layout": [ttnn.TILE_LAYOUT],
"input_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
}
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT or test_vector["input_dtype"] == ttnn.bfloat8_b:
return True, "ROW_MAJOR_LAYOUT and ttnn.bfloat8_b are not supported"
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_dtype,
input_layout,
input_memory_config,
output_memory_config,
*,
device,
) -> list:
torch.manual_seed(0)

torch_input_tensor = gen_func_with_cast_tt(partial(torch_random, low=-1, high=1, dtype=torch.float32), input_dtype)(
input_shape
)

torch_output_tensor = torch.asin(torch_input_tensor)

input_tensor = ttnn.from_torch(
torch_input_tensor,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

start_time = start_measuring_time()
result = ttnn.asin(input_tensor, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(result)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
80 changes: 80 additions & 0 deletions tests/sweep_framework/sweeps/eltwise/unary/celu/celu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 256, 256], [1, 1, 32, 32], 16)
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 16)
+ gen_shapes([32, 32], [256, 256], [32, 32], 32),
"input_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_layout": [ttnn.TILE_LAYOUT],
"input_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"alpha": [1, 2, 3],
}
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT or test_vector["input_dtype"] == ttnn.bfloat8_b:
return True, "ROW_MAJOR_LAYOUT and ttnn.bfloat8_b are not supported"
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_dtype,
input_layout,
input_memory_config,
output_memory_config,
alpha,
*,
device,
) -> list:
torch.manual_seed(0)

torch_input_tensor = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.celu)
torch_output_tensor = golden_function(torch_input_tensor, alpha=alpha)

input_tensor = ttnn.from_torch(
torch_input_tensor,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

start_time = start_measuring_time()
result = ttnn.celu(input_tensor, alpha=alpha, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(result)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 256, 256], [1, 1, 32, 32], 16)
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 16)
+ gen_shapes([32, 32], [256, 256], [32, 32], 32),
"input_dtype": [ttnn.bfloat16],
"input_layout": [ttnn.TILE_LAYOUT],
"input_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
}
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT or test_vector["input_dtype"] == ttnn.bfloat8_b:
return True, "ROW_MAJOR_LAYOUT and ttnn.bfloat8_b are not supported"
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_dtype,
input_layout,
input_memory_config,
output_memory_config,
*,
device,
) -> list:
torch.manual_seed(0)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)

torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.clamp)
torch_output_tensor = golden_function(torch_input_tensor_a, min=torch_input_tensor_b)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

input_tensor_b = ttnn.from_torch(
torch_input_tensor_b,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

start_time = start_measuring_time()
result = ttnn.clamp(input_tensor_a, min=input_tensor_b, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(result)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
102 changes: 102 additions & 0 deletions tests/sweep_framework/sweeps/eltwise/unary/clamp/clamp_ternary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 256, 256], [1, 1, 32, 32], 16)
+ gen_shapes([1, 32, 32], [12, 256, 256], [1, 32, 32], 16)
+ gen_shapes([32, 32], [256, 256], [32, 32], 32),
"input_dtype": [ttnn.bfloat16],
"input_layout": [ttnn.TILE_LAYOUT],
"input_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
}
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT or test_vector["input_dtype"] == ttnn.bfloat8_b:
return True, "ROW_MAJOR_LAYOUT and ttnn.bfloat8_b are not supported"
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_dtype,
input_layout,
input_memory_config,
output_memory_config,
*,
device,
) -> list:
torch.manual_seed(0)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)

torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)

torch_input_tensor_c = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.clamp)
torch_output_tensor = golden_function(torch_input_tensor_a, min=torch_input_tensor_b, max=torch_input_tensor_c)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

input_tensor_b = ttnn.from_torch(
torch_input_tensor_b,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

input_tensor_c = ttnn.from_torch(
torch_input_tensor_c,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

start_time = start_measuring_time()
result = ttnn.clamp(input_tensor_a, min=input_tensor_b, max=input_tensor_c, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(result)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
Loading
Loading