This repository has been archived by the owner on Jun 9, 2023. It is now read-only.
generated from thoth-station/template-project
-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add kebechet metrics class and cli option
- Loading branch information
Showing
2 changed files
with
239 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# Copyright (C) 2021 Dominik Tuchyna | ||
# | ||
# This file is part of thoth-station/mi - Meta-information Indicators. | ||
# | ||
# thoth-station/mi - Meta-information Indicators is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# thoth-station/mi - Meta-information Indicators is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with thoth-station/mi - Meta-information Indicators. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
"""Kebechet repository metrics evaluation.""" | ||
|
||
import logging | ||
import os | ||
import time | ||
from datetime import datetime | ||
from pathlib import Path | ||
from typing import Any, Dict, Optional | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from github import Github | ||
|
||
from srcopsmetrics.entities.issue import Issue | ||
from srcopsmetrics.entities.pull_request import PullRequest | ||
from srcopsmetrics.storage import KnowledgeStorage | ||
|
||
BOT_NAMES = {"sesheta"} | ||
|
||
UPDATE_TYPES_AND_KEYWORDS = { | ||
"automatic": "Automatic update of dependency", | ||
"failure_notification": "Failed to update dependencies to their latest version", | ||
"initial_lock": "Initial dependency lock", | ||
} | ||
|
||
_LOGGER = logging.getLogger(__name__) | ||
_GITHUB_ACCESS_TOKEN = os.getenv("GITHUB_ACCESS_TOKEN") | ||
|
||
|
||
class KebechetMetrics: | ||
"""Kebechet Metrics inspected by MI.""" | ||
|
||
def __init__(self, repository: str, today: bool = False): | ||
"""Initialize with collected knowledge.""" | ||
gh_repo = Github(login_or_token=_GITHUB_ACCESS_TOKEN, timeout=50).get_repo(repository) | ||
|
||
self.repo_name = repository | ||
self.prs = PullRequest(gh_repo).load_previous_knowledge(is_local=True) | ||
self.issues = Issue(gh_repo).load_previous_knowledge(is_local=True) | ||
self.today = today | ||
|
||
def _get_least_square_polynomial_fit(self, x_series: pd.Series, y_series: pd.Series, degree: int = 3): | ||
"""Apply least square polynomial fit on time metrics data.""" | ||
return np.poly1d(np.polyfit(x_series, y_series, degree)) | ||
|
||
def _compute_predictions(self, x_series: pd.Series, y_series: pd.Series, days_ahead: int = 7) -> np.array: | ||
"""Compute estimation of the mean metrics in time for future score. | ||
Return numpy.array with prediciton for all the available dates | ||
in self.pr_metrics plus specified days_ahead | ||
""" | ||
score = self._get_least_square_polynomial_fit(x_series, y_series) | ||
return score(x_series.append(pd.Series([int(time.time()) * 3600 * 24 for i in range(1, days_ahead + 1)]))) | ||
|
||
@staticmethod | ||
def _get_responded_time(issue) -> Optional[int]: | ||
for comment in issue["comments"]: | ||
if comment["author"] in BOT_NAMES: | ||
return int(comment["created_at"]) | ||
return None | ||
|
||
@staticmethod | ||
def _get_update_manager_request_type(issue) -> Optional[str]: | ||
"""Get the type of the update request.""" | ||
if issue["title"] == "Kebechet update": | ||
return "manual" | ||
|
||
for request_type, keyword in UPDATE_TYPES_AND_KEYWORDS.items(): | ||
if keyword in issue["title"]: | ||
return request_type | ||
|
||
return None | ||
|
||
def _get_update_manager_issues(self): | ||
data = [] | ||
for issue in self.issues.values(): | ||
issue_type = KebechetMetrics._get_update_manager_request_type(issue) | ||
if not issue_type: | ||
continue | ||
|
||
created_at = int(issue["created_at"]) | ||
response = self._get_responded_time(issue) | ||
ttre = response - created_at if response else None | ||
|
||
closed_at = int(issue["closed_at"]) if issue["closed_at"] else None | ||
closed_by = issue["closed_by"] if issue["closed_by"] else None | ||
closed_by_bot = closed_by in BOT_NAMES if closed_by else False | ||
ttci = closed_at - created_at if closed_at else None | ||
|
||
data.append([created_at, issue_type, ttre, ttci, closed_by_bot]) | ||
|
||
df = pd.DataFrame(data) | ||
df.columns = ["date", "type", "ttre", "ttci", "closed_by_bot"] | ||
|
||
return df.sort_values(by=["date"]).reset_index(drop=True) | ||
|
||
def _get_update_manager_pull_requests(self): | ||
data = [] | ||
for pr in self.prs.values(): | ||
pr_type = KebechetMetrics._get_update_manager_request_type(pr) | ||
if not pr_type: | ||
continue | ||
|
||
created_at = int(pr["created_at"]) | ||
|
||
ttm = int(pr["merged_at"]) - created_at if pr["merged_at"] else None | ||
|
||
# TODO: include stats of reviewers? | ||
# reviewers = [pr["reviews"][r]["author"] for r in pr["reviews"]] | ||
review_times = [int(pr["reviews"][r]["submitted_at"]) for r in pr["reviews"]] | ||
ttfr = min(review_times) - created_at if review_times else None | ||
|
||
reviews = [r for r in pr["reviews"].values()] | ||
approvals = [r["submitted_at"] for r in reviews if r["state"] == "APPROVED"] | ||
tta = min(approvals) - created_at if approvals else None | ||
|
||
rejected = 1 if ttm is None and pr["closed_at"] is not None else 0 | ||
closed_by_bot = 1 if rejected is not None and pr["closed_by"] in BOT_NAMES else 0 | ||
merged_by_kebechet_bot = 1 if closed_by_bot and not rejected else 0 | ||
rejected_by_kebechet_bot = 1 if closed_by_bot and rejected else 0 | ||
|
||
data.append([created_at, pr_type, ttm, ttfr, tta, merged_by_kebechet_bot, rejected_by_kebechet_bot]) | ||
|
||
df = pd.DataFrame(data) | ||
df.columns = ["date", "type", "ttm", "ttfr", "tta", "merged_by_kebechet_bot", "rejected_by_kebechet_bot"] | ||
|
||
return df.sort_values(by=["date"]).reset_index(drop=True) | ||
|
||
def get_overall_stats_update_manager(self): | ||
"""Return stats over whole repository age.""" | ||
prs = self._get_update_manager_pull_requests() | ||
|
||
stats: Dict[str, Any] = {} | ||
stats["created_pull_requests"] = len(prs) | ||
|
||
stats["rejected"] = len(prs[np.isnan(prs["ttm"])]) | ||
stats["rejected_by_kebechet_bot"] = len(prs[prs["rejected_by_kebechet_bot"] == 1]) | ||
stats["rejected_by_other"] = stats["rejected"] - stats["rejected_by_kebechet_bot"] | ||
|
||
stats["merged"] = len(prs) - stats["rejected"] | ||
stats["merged_by_kebechet_bot"] = len(prs[prs["merged_by_kebechet_bot"] == 1]) | ||
stats["merged_by_other"] = stats["merged"] - stats["merged_by_kebechet_bot"] | ||
|
||
return stats | ||
|
||
def get_daily_stats_update_manager(self): | ||
"""Get daily stats. | ||
If self.today set to true, return only stats for current day. | ||
""" | ||
prs = self._get_update_manager_pull_requests() | ||
prs["days"] = prs.apply(lambda x: datetime.fromtimestamp(x["date"]).date(), axis=1) | ||
|
||
stats: Dict[datetime, Any] = {} | ||
day_range = [datetime.now().date()] if self.today else prs["days"].unique() | ||
for date in day_range: | ||
prs_day = prs[prs["days"] == date] | ||
|
||
day = {} | ||
day["created_pull_requests"] = len(prs_day) | ||
|
||
day["rejected"] = len(prs_day[np.isnan(prs_day["ttm"])]) | ||
day["rejected_by_kebechet_bot"] = len(prs_day[prs_day["rejected_by_kebechet_bot"] == 1]) | ||
day["rejected_by_other"] = day["rejected"] - day["rejected_by_kebechet_bot"] | ||
|
||
day["merged"] = len(prs_day) - day["rejected"] | ||
day["merged_by_kebechet_bot"] = len(prs_day[prs_day["merged_by_kebechet_bot"] == 1]) | ||
day["merged_by_other"] = day["merged"] - day["merged_by_kebechet_bot"] | ||
|
||
if self.today: | ||
return day | ||
|
||
stats[str(date)] = day | ||
|
||
return stats | ||
|
||
def evaluate_and_store_kebechet_metrics(self, is_local: bool): | ||
"""Calculate and store metrics for every kebechet manager in repository.""" | ||
for get_stats in [self.update_manager]: | ||
stats = get_stats() | ||
|
||
path = f"./srcopsmetrics/metrics/{self.repo_name}/kebechet_{get_stats.__name__}" | ||
if self.today: | ||
curr_day = datetime.now().date() | ||
path += f"_{str(curr_day)}" | ||
path += ".json" | ||
|
||
KnowledgeStorage(is_local=is_local).save_knowledge(file_path=Path(path), data=stats) | ||
|
||
def update_manager(self): | ||
"""Calculate and store update manager metrics.""" | ||
overall_stats = self.get_overall_stats_update_manager() | ||
daily_stats = self.get_daily_stats_update_manager() | ||
return {"overall": overall_stats, "daily": daily_stats} | ||
|
||
def label_bot_manager(self): | ||
"""Calculate and store label bot manager metrics.""" | ||
raise NotImplementedError | ||
|
||
def thoth_advise(self): | ||
"""Calculate and store thoth advise manager metrics.""" | ||
raise NotImplementedError | ||
|
||
def thoth_promenance(self): | ||
"""Calculate and store promenance manager metrics.""" | ||
raise NotImplementedError | ||
|
||
def pipfile_requirements(self): | ||
"""Calculate and store pipfile requirements manager metrics.""" | ||
raise NotImplementedError |