-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
278 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import argparse | ||
import gc | ||
import json | ||
import math | ||
import os | ||
import shutil | ||
import warnings | ||
|
||
import torch | ||
|
||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer | ||
|
||
|
||
try: | ||
from transformers import LlamaTokenizerFast | ||
except ImportError as e: | ||
warnings.warn(e) | ||
warnings.warn( | ||
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" | ||
) | ||
LlamaTokenizerFast = None | ||
|
||
""" | ||
Sample usage: | ||
``` | ||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \ | ||
--input_dir /share/models/llama_model/llama/ --model_size 13B --output_dir /share/models/llama_model/hf/13B/ | ||
``` | ||
Thereafter, models can be loaded via: | ||
```py | ||
from transformers import LlamaForCausalLM, LlamaTokenizer | ||
model = LlamaForCausalLM.from_pretrained("/share/models/llama_model/hf/13B/") | ||
tokenizer = LlamaTokenizer.from_pretrained("/share/models/llama_model/hf/13B/") | ||
``` | ||
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions | ||
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). | ||
""" | ||
|
||
INTERMEDIATE_SIZE_MAP = { | ||
"7B": 11008, | ||
"13B": 13824, | ||
"30B": 17920, | ||
"65B": 22016, | ||
} | ||
NUM_SHARDS = { | ||
"7B": 1, | ||
"13B": 2, | ||
"30B": 4, | ||
"65B": 8, | ||
} | ||
|
||
|
||
def compute_intermediate_size(n): | ||
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256 | ||
|
||
|
||
def read_json(path): | ||
with open(path, "r") as f: | ||
return json.load(f) | ||
|
||
|
||
def write_json(text, path): | ||
with open(path, "w") as f: | ||
json.dump(text, f) | ||
|
||
|
||
def write_model(model_path, input_base_path, model_size): | ||
os.makedirs(model_path, exist_ok=True) | ||
tmp_model_path = os.path.join(model_path, "tmp") | ||
os.makedirs(tmp_model_path, exist_ok=True) | ||
|
||
params = read_json(os.path.join(input_base_path, "params.json")) | ||
num_shards = NUM_SHARDS[model_size] | ||
n_layers = params["n_layers"] | ||
n_heads = params["n_heads"] | ||
n_heads_per_shard = n_heads // num_shards | ||
dim = params["dim"] | ||
dims_per_head = dim // n_heads | ||
base = 10000.0 | ||
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) | ||
|
||
# permute for sliced rotary | ||
def permute(w): | ||
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) | ||
|
||
print(f"Fetching all parameters from the checkpoint at {input_base_path}.") | ||
# Load weights | ||
if model_size == "7B": | ||
# Not sharded | ||
# (The sharded implementation would also work, but this is simpler.) | ||
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") | ||
else: | ||
# Sharded | ||
loaded = [ | ||
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") | ||
for i in range(num_shards) | ||
] | ||
param_count = 0 | ||
index_dict = {"weight_map": {}} | ||
for layer_i in range(n_layers): | ||
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" | ||
if model_size == "7B": | ||
# Unsharded | ||
state_dict = { | ||
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( | ||
loaded[f"layers.{layer_i}.attention.wq.weight"] | ||
), | ||
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( | ||
loaded[f"layers.{layer_i}.attention.wk.weight"] | ||
), | ||
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], | ||
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], | ||
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], | ||
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], | ||
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], | ||
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], | ||
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], | ||
} | ||
else: | ||
# Sharded | ||
# Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint | ||
# becoming 37GB instead of 26GB for some reason. | ||
state_dict = { | ||
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ | ||
f"layers.{layer_i}.attention_norm.weight" | ||
].clone(), | ||
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ | ||
f"layers.{layer_i}.ffn_norm.weight" | ||
].clone(), | ||
} | ||
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( | ||
torch.cat( | ||
[ | ||
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) | ||
for i in range(num_shards) | ||
], | ||
dim=0, | ||
).reshape(dim, dim) | ||
) | ||
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( | ||
torch.cat( | ||
[ | ||
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) | ||
for i in range(num_shards) | ||
], | ||
dim=0, | ||
).reshape(dim, dim) | ||
) | ||
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( | ||
[ | ||
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) | ||
for i in range(num_shards) | ||
], | ||
dim=0, | ||
).reshape(dim, dim) | ||
|
||
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 | ||
) | ||
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 | ||
) | ||
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 | ||
) | ||
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 | ||
) | ||
|
||
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq | ||
for k, v in state_dict.items(): | ||
index_dict["weight_map"][k] = filename | ||
param_count += v.numel() | ||
torch.save(state_dict, os.path.join(tmp_model_path, filename)) | ||
|
||
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" | ||
if model_size == "7B": | ||
# Unsharded | ||
state_dict = { | ||
"model.embed_tokens.weight": loaded["tok_embeddings.weight"], | ||
"model.norm.weight": loaded["norm.weight"], | ||
"lm_head.weight": loaded["output.weight"], | ||
} | ||
else: | ||
state_dict = { | ||
"model.norm.weight": loaded[0]["norm.weight"], | ||
"model.embed_tokens.weight": torch.cat( | ||
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 | ||
), | ||
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), | ||
} | ||
|
||
for k, v in state_dict.items(): | ||
index_dict["weight_map"][k] = filename | ||
param_count += v.numel() | ||
torch.save(state_dict, os.path.join(tmp_model_path, filename)) | ||
|
||
# Write configs | ||
index_dict["metadata"] = {"total_size": param_count * 2} | ||
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) | ||
|
||
config = LlamaConfig( | ||
hidden_size=dim, | ||
intermediate_size=compute_intermediate_size(dim), | ||
num_attention_heads=params["n_heads"], | ||
num_hidden_layers=params["n_layers"], | ||
rms_norm_eps=params["norm_eps"], | ||
) | ||
config.save_pretrained(tmp_model_path) | ||
|
||
# Make space so we can load the model properly now. | ||
del state_dict | ||
del loaded | ||
gc.collect() | ||
|
||
print("Loading the checkpoint in a Llama model.") | ||
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) | ||
# Avoid saving this as part of the config. | ||
del model.config._name_or_path | ||
|
||
print("Saving in the Transformers format.") | ||
model.save_pretrained(model_path) | ||
shutil.rmtree(tmp_model_path) | ||
|
||
|
||
def write_tokenizer(tokenizer_path, input_tokenizer_path): | ||
# Initialize the tokenizer based on the `spm` model | ||
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast | ||
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") | ||
tokenizer = tokenizer_class(input_tokenizer_path) | ||
tokenizer.save_pretrained(tokenizer_path) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--input_dir", | ||
help="Location of LLaMA weights, which contains tokenizer.model and model folders", | ||
) | ||
parser.add_argument( | ||
"--model_size", | ||
choices=["7B", "13B", "30B", "65B", "tokenizer_only"], | ||
) | ||
parser.add_argument( | ||
"--output_dir", | ||
help="Location to write HF model and tokenizer", | ||
) | ||
args = parser.parse_args() | ||
if args.model_size != "tokenizer_only": | ||
write_model( | ||
model_path=args.output_dir, | ||
input_base_path=os.path.join(args.input_dir, args.model_size), | ||
model_size=args.model_size, | ||
) | ||
spm_path = os.path.join(args.input_dir, "tokenizer.model") | ||
write_tokenizer(args.output_dir, spm_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |