Skip to content

ulaval-damas/tree-bark-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TreeBarkClassification

Article

If you use BarkNet 1.0 or this code in your work, please cite the following article:
https://arxiv.org/abs/1803.00949

Bibtex entry

@INPROCEEDINGS{8593514, author={M. {Carpentier} and P. {Giguère} and J. {Gaudreault}}, booktitle={2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, title={Tree Species Identification from Bark Images Using Convolutional Neural Networks}, year={2018}, volume={}, number={}, pages={1075-1081}, keywords={feature extraction;forestry;geophysical image processing;image classification;learning (artificial intelligence);neural nets;vegetation mapping;bark images;tree individual number;high-resolution bark images;species recognition;tree diameters;tree bark species classification;standard vision problems;deep learning;forestry related tasks;convolutional neural networks;tree species identification;Vegetation;Forestry;Deep learning;Feature extraction;Training;Cameras;Task analysis}, doi={10.1109/IROS.2018.8593514}, ISSN={2153-0866}, month={Oct},}

BarkNet 1.0 Database

Available on Mendeley, in 4 chunks :

October 11th, 2019: fixed corrupted BOJ+BOP pictures. https://storage.googleapis.com/barknet-1/BarkNet%201.0001.zip (link expired)

How to run

python3 train.py --config PATH_TO_CONFIG_FILE

How to test

python3 test.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages