-
-
Notifications
You must be signed in to change notification settings - Fork 166
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* main functions without corrected mypy errors, unit tests and docstrings * add unit tests for the decorator - check for test coverage * fix #2500 (comment) * mypy - remove shots * more unit tests + docstrings * dosctring args formatting * fix #2499 (comment) * weird chunking failure * try chunking to 2 * num_chunks = 5 with test_cirq * 200 * push to check for test coverage * chunking failures * split decorator unit test * cleanup * chunking failure again + docker failure * nate's suggestions
- Loading branch information
1 parent
6f912f6
commit 411e234
Showing
5 changed files
with
308 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# Copyright (C) Unitary Fund | ||
# | ||
# This source code is licensed under the GPL license (v3) found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
"""Extrapolation methods for Layerwise Richardson Extrapolation (LRE)""" | ||
|
||
from functools import wraps | ||
from typing import Any, Callable, Optional, Union | ||
|
||
import numpy as np | ||
from cirq import Circuit | ||
|
||
from mitiq import QPROGRAM | ||
from mitiq.lre import ( | ||
multivariate_layer_scaling, | ||
multivariate_richardson_coefficients, | ||
) | ||
from mitiq.zne.scaling import fold_gates_at_random | ||
|
||
|
||
def execute_with_lre( | ||
input_circuit: Circuit, | ||
executor: Callable[[Circuit], float], | ||
degree: int, | ||
fold_multiplier: int, | ||
folding_method: Callable[ | ||
[QPROGRAM, float], QPROGRAM | ||
] = fold_gates_at_random, # type: ignore [has-type] | ||
num_chunks: Optional[int] = None, | ||
) -> float: | ||
r""" | ||
Defines the executor required for Layerwise Richardson | ||
Extrapolation as defined in :cite:`Russo_2024_LRE`. | ||
Note that this method only works for the multivariate extrapolation | ||
methods. It does not allows a user to choose which layers in the input | ||
circuit will be scaled. | ||
.. seealso:: | ||
If you would prefer to choose the layers for unitary | ||
folding, use :func:`mitiq.zne.scaling.layer_scaling.get_layer_folding` | ||
instead. | ||
Args: | ||
input_circuit: Circuit to be scaled. | ||
executor: Executes a circuit and returns a `float` | ||
degree: Degree of the multivariate polynomial. | ||
fold_multiplier: Scaling gap value required for unitary folding which | ||
is used to generate the scale factor vectors. | ||
folding_method: Unitary folding method. Default is | ||
:func:`fold_gates_at_random`. | ||
num_chunks: Number of desired approximately equal chunks. When the | ||
number of chunks is the same as the layers in the input circuit, | ||
the input circuit is unchanged. | ||
Returns: | ||
Error-mitigated expectation value | ||
""" | ||
noise_scaled_circuits = multivariate_layer_scaling( | ||
input_circuit, degree, fold_multiplier, num_chunks, folding_method | ||
) | ||
|
||
linear_combination_coeffs = multivariate_richardson_coefficients( | ||
input_circuit, degree, fold_multiplier, num_chunks | ||
) | ||
|
||
# verify the linear combination coefficients and the calculated expectation | ||
# values have the same length | ||
if len(noise_scaled_circuits) != len( # pragma: no cover | ||
linear_combination_coeffs | ||
): | ||
raise AssertionError( | ||
"The number of expectation values are not equal " | ||
+ "to the number of coefficients required for " | ||
+ "multivariate extrapolation." | ||
) | ||
|
||
lre_exp_values = [] | ||
for scaled_circuit in noise_scaled_circuits: | ||
circ_exp_val = executor(scaled_circuit) | ||
lre_exp_values.append(circ_exp_val) | ||
|
||
return np.dot(lre_exp_values, linear_combination_coeffs) | ||
|
||
|
||
def mitigate_executor( | ||
executor: Callable[[Circuit], float], | ||
degree: int, | ||
fold_multiplier: int, | ||
folding_method: Callable[ | ||
[Union[Any], float], Union[Any] | ||
] = fold_gates_at_random, | ||
num_chunks: Optional[int] = None, | ||
) -> Callable[[Circuit], float]: | ||
"""Returns a modified version of the input `executor` which is | ||
error-mitigated with layerwise richardson extrapolation (LRE). | ||
Args: | ||
input_circuit: Circuit to be scaled. | ||
executor: Executes a circuit and returns a `float` | ||
degree: Degree of the multivariate polynomial. | ||
fold_multiplier Scaling gap value required for unitary folding which | ||
is used to generate the scale factor vectors. | ||
folding_method: Unitary folding method. Default is | ||
:func:`fold_gates_at_random`. | ||
num_chunks: Number of desired approximately equal chunks. When the | ||
number of chunks is the same as the layers in the input circuit, | ||
the input circuit is unchanged. | ||
Returns: | ||
Error-mitigated version of the circuit executor. | ||
""" | ||
|
||
@wraps(executor) | ||
def new_executor(input_circuit: Circuit) -> float: | ||
return execute_with_lre( | ||
input_circuit, | ||
executor, | ||
degree, | ||
fold_multiplier, | ||
folding_method, | ||
num_chunks, | ||
) | ||
|
||
return new_executor | ||
|
||
|
||
def lre_decorator( | ||
degree: int, | ||
fold_multiplier: int, | ||
folding_method: Callable[[Circuit, float], Circuit] = fold_gates_at_random, | ||
num_chunks: Optional[int] = None, | ||
) -> Callable[[Callable[[Circuit], float]], Callable[[Circuit], float]]: | ||
"""Decorator which adds an error-mitigation layer based on | ||
layerwise richardson extrapolation (LRE). | ||
Args: | ||
input_circuit: Circuit to be scaled. | ||
executor: Executes a circuit and returns a `float` | ||
degree: Degree of the multivariate polynomial. | ||
fold_multiplier Scaling gap value required for unitary folding which | ||
is used to generate the scale factor vectors. | ||
folding_method: Unitary folding method. Default is | ||
:func:`fold_gates_at_random`. | ||
num_chunks: Number of desired approximately equal chunks. When the | ||
number of chunks is the same as the layers in the input circuit, | ||
the input circuit is unchanged. | ||
Returns: | ||
Error-mitigated decorator. | ||
""" | ||
|
||
def decorator( | ||
executor: Callable[[Circuit], float], | ||
) -> Callable[[Circuit], float]: | ||
return mitigate_executor( | ||
executor, | ||
degree, | ||
fold_multiplier, | ||
folding_method, | ||
num_chunks, | ||
) | ||
|
||
return decorator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
"""Unit tests for the LRE extrapolation methods.""" | ||
|
||
import re | ||
|
||
import pytest | ||
from cirq import DensityMatrixSimulator, depolarize | ||
|
||
from mitiq import benchmarks | ||
from mitiq.lre import execute_with_lre, lre_decorator, mitigate_executor | ||
from mitiq.zne.scaling import fold_all, fold_global | ||
|
||
# default circuit for all unit tests | ||
test_cirq = benchmarks.generate_rb_circuits( | ||
n_qubits=1, | ||
num_cliffords=2, | ||
)[0] | ||
|
||
|
||
# default execute function for all unit tests | ||
def execute(circuit, noise_level=0.025): | ||
"""Default executor for all unit tests.""" | ||
noisy_circuit = circuit.with_noise(depolarize(p=noise_level)) | ||
rho = DensityMatrixSimulator().simulate(noisy_circuit).final_density_matrix | ||
return rho[0, 0].real | ||
|
||
|
||
noisy_val = execute(test_cirq) | ||
ideal_val = execute(test_cirq, noise_level=0) | ||
|
||
|
||
@pytest.mark.parametrize("degree, fold_multiplier", [(2, 2), (2, 3), (3, 4)]) | ||
def test_lre_exp_value(degree, fold_multiplier): | ||
"""Verify LRE executors work as expected.""" | ||
lre_exp_val = execute_with_lre( | ||
test_cirq, | ||
execute, | ||
degree=degree, | ||
fold_multiplier=fold_multiplier, | ||
) | ||
assert abs(lre_exp_val - ideal_val) <= abs(noisy_val - ideal_val) | ||
|
||
|
||
@pytest.mark.parametrize("degree, fold_multiplier", [(2, 2), (2, 3), (3, 4)]) | ||
def test_lre_exp_value_decorator(degree, fold_multiplier): | ||
"""Verify LRE mitigated executor work as expected.""" | ||
mitigated_executor = mitigate_executor( | ||
execute, degree=2, fold_multiplier=2 | ||
) | ||
exp_val_from_mitigate_executor = mitigated_executor(test_cirq) | ||
assert abs(exp_val_from_mitigate_executor - ideal_val) <= abs( | ||
noisy_val - ideal_val | ||
) | ||
|
||
|
||
def test_lre_decorator(): | ||
"""Verify LRE decorators work as expected.""" | ||
|
||
@lre_decorator(degree=2, fold_multiplier=2) | ||
def execute(circuit, noise_level=0.025): | ||
noisy_circuit = circuit.with_noise(depolarize(p=noise_level)) | ||
rho = ( | ||
DensityMatrixSimulator() | ||
.simulate(noisy_circuit) | ||
.final_density_matrix | ||
) | ||
return rho[0, 0].real | ||
|
||
assert abs(execute(test_cirq) - ideal_val) <= abs(noisy_val - ideal_val) | ||
|
||
|
||
def test_lre_decorator_raised_error(): | ||
"""Verify an error is raised when the required parameters for the decorator | ||
are not specified.""" | ||
with pytest.raises(TypeError, match=re.escape("lre_decorator() missing")): | ||
|
||
@lre_decorator() | ||
def execute(circuit, noise_level=0.025): | ||
noisy_circuit = circuit.with_noise(depolarize(p=noise_level)) | ||
rho = ( | ||
DensityMatrixSimulator() | ||
.simulate(noisy_circuit) | ||
.final_density_matrix | ||
) | ||
return rho[0, 0].real | ||
|
||
assert abs(execute(test_cirq) - ideal_val) <= abs( | ||
noisy_val - ideal_val | ||
) | ||
|
||
|
||
def test_lre_executor_with_chunking(): | ||
"""Verify the executor works as expected for chunking a large circuit into | ||
a smaller circuit.""" | ||
# define a larger circuit | ||
test_cirq = benchmarks.generate_rb_circuits(n_qubits=1, num_cliffords=12)[ | ||
0 | ||
] | ||
lre_exp_val = execute_with_lre( | ||
test_cirq, execute, degree=2, fold_multiplier=2, num_chunks=14 | ||
) | ||
assert abs(lre_exp_val - ideal_val) <= abs(noisy_val - ideal_val) | ||
|
||
|
||
@pytest.mark.parametrize("num_chunks", [(1), (2), (3), (4), (5), (6), (7)]) | ||
def test_large_circuit_with_small_chunks_poor_performance(num_chunks): | ||
"""Verify chunking performs poorly when a large number of layers are | ||
chunked into a smaller number of circuit chunks.""" | ||
# define a larger circuit | ||
test_cirq = benchmarks.generate_rb_circuits(n_qubits=1, num_cliffords=15)[ | ||
0 | ||
] | ||
lre_exp_val = execute_with_lre( | ||
test_cirq, execute, degree=2, fold_multiplier=2, num_chunks=num_chunks | ||
) | ||
assert abs(lre_exp_val - ideal_val) >= abs(noisy_val - ideal_val) | ||
|
||
|
||
@pytest.mark.parametrize("input_method", [(fold_global), (fold_all)]) | ||
def test_lre_executor_with_different_folding_methods(input_method): | ||
"""Verify the executor works as expected for using non-default unitary | ||
folding methods.""" | ||
lre_exp_val = execute_with_lre( | ||
test_cirq, | ||
execute, | ||
degree=2, | ||
fold_multiplier=2, | ||
folding_method=input_method, | ||
) | ||
assert abs(lre_exp_val - ideal_val) <= abs(noisy_val - ideal_val) |