-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathMakefile
52 lines (37 loc) · 1.94 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
.RECIPEPREFIX +=
ROOT=~/datasets/VQA2
TRAIN_ANN=${ROOT}/v2_mscoco_train2014_annotations.json
TRAIN_QUES=${ROOT}/v2_OpenEnded_mscoco_train2014_questions.json
TRAIN_IMGS=image_embeddings/coco_train_resnet152_pool5.pth
VAL_ANN=${ROOT}/v2_mscoco_val2014_annotations.json
VAL_QUES=${ROOT}/v2_OpenEnded_mscoco_val2014_questions.json
VAL_IMGS=image_embeddings/coco_val_resnet152_pool5.pth
# change this depending on the feature extractor used
# VGG models have dim 4096, Resnet has 2048
IMAGE_DIM=2048
IMAGE_ROOT=~/datasets/coco
ARCH=DeeperLSTM
BATCH=128
WORKERS=8
CHECKPOINT=weights/vqa_checkpoint_DeeperLSTM_200.pth
main: train evaluate
train:
python main.py $(TRAIN_ANN) $(TRAIN_QUES) $(VAL_ANN) $(VAL_QUES) --images $(TRAIN_IMGS) --val_images $(VAL_IMGS) \
--arch $(ARCH) --batch_size ${BATCH} --num_workers ${WORKERS} --image_root $(IMAGE_ROOT) --image_dim $(IMAGE_DIM)
train_mcb:
python main.py $(TRAIN_ANN) $(TRAIN_QUES) $(VAL_ANN) $(VAL_QUES) --images $(TRAIN_IMGS) --val_images $(VAL_IMGS) \
--arch MCBModel --batch_size 64 --num_workers ${WORKERS} --image_root $(IMAGE_ROOT) --raw_images --img_size 448 --image_dim $(IMAGE_DIM)
raw_images:
python main.py $(TRAIN_ANN) $(TRAIN_QUES) $(VAL_ANN) $(VAL_QUES) \
--raw_images --image_root $(IMAGE_ROOT) --arch $(ARCH) --batch_size 32
options:
python main.py -h
evaluate:
python evaluate.py $(TRAIN_ANN) $(TRAIN_QUES) $(VAL_ANN) $(VAL_QUES) --images $(TRAIN_IMGS) --val_images $(VAL_IMGS) \
--batch_size 1 --resume $(CHECKPOINT) --num_workers ${WORKERS} --image_dim $(IMAGE_DIM)
preprocess_train:
python preprocess_images.py $(IMAGE_ROOT)/annotations/instances_train2014.json --root $(IMAGE_ROOT) --split train --arch resnet152
preprocess_val:
python preprocess_images.py $(IMAGE_ROOT)/annotations/instances_val2014.json --root $(IMAGE_ROOT) --split val --arch resnet152
demo:
python demo.py demo_img.jpg "what room is this?" $(TRAIN_QUES) $(TRAIN_ANN) --checkpoint $(CHECKPOINT)