-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
96 lines (77 loc) · 3.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os.path as osp
import torch
from torch import nn, optim
from torch.optim import lr_scheduler
from torchvision import transforms
import dataset
import trainer
import visualize
from arguments import parse_args
from models.model import Models
def main():
args = parse_args()
if torch.cuda.is_available():
device = torch.device('cuda:{0}'.format(args.gpu))
else:
device = torch.device('cpu')
transform = transforms.Compose([
transforms.Resize((args.img_size, args.img_size)),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
vqa_loader = dataset.get_dataloader(osp.expanduser(args.annotations),
osp.expanduser(args.questions),
args.images, args, split='train',
raw_images=args.raw_images,
transforms=transform)
# We always use the vocab from the training set
vocab = vqa_loader.dataset.vocab
maps = {
"vocab": vocab,
"word_to_wid": vqa_loader.dataset.word_to_wid,
"wid_to_word": vqa_loader.dataset.wid_to_word,
"ans_to_aid": vqa_loader.dataset.ans_to_aid,
"aid_to_ans": vqa_loader.dataset.aid_to_ans,
}
val_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
val_loader = dataset.get_dataloader(osp.expanduser(args.val_annotations),
osp.expanduser(args.val_questions),
args.val_images, args, split='val',
raw_images=args.raw_images,
maps=maps, vocab=vocab,
shuffle=False, transforms=val_transform)
arch = Models[args.arch].value
model = arch(len(vocab), image_dim=args.image_dim,
output_dim=args.top_answer_limit, raw_images=args.raw_images)
if args.resume:
state = torch.load(args.resume)
model.load_state_dict(state["model"])
criterion = nn.CrossEntropyLoss()
model = model.to(device)
criterion = criterion.to(device)
# optimizer = optim.Adam(model.parameters(), lr=args.lr,
# betas=tuple(args.betas), weight_decay=args.weight_decay)
optimizer = optim.RMSprop(model.parameters(), lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.decay_interval,
gamma=args.lr_decay)
if args.visualize:
vis = visualize.Visualizer(args.port)
else:
vis = None
print("Beginning training")
print("#"*80)
for epoch in range(args.start_epoch, args.epochs):
scheduler.step()
trainer.train(model, vqa_loader, criterion,
optimizer, epoch, args, device, vis=vis)
# trainer.evaluate(model, val_loader, criterion, epoch, args, device, vis=vis)
print("Training complete!")
if __name__ == "__main__":
main()