-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrainer.py
134 lines (94 loc) · 3.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import os.path as osp
import torch
from torch.nn import utils
from metrics import accuracy
def train(model, dataloader, criterion, optimizer, epoch, args, device, vis=None):
# Set the model to train mode
model = model.train()
# enable autograd tracking
torch.set_grad_enabled(True)
avg_loss = AverageMeter()
for idx, sample in enumerate(dataloader):
q = sample['question']
lengths = sample['question_len']
img = sample["image"]
ans_label = sample['answer_id']
q = q.to(device)
img = img.to(device)
ans = ans_label.to(device)
optimizer.zero_grad()
output = model(img, q, lengths)
loss = criterion(output, ans)
loss.backward()
# apply gradient clipping
# utils.clip_grad_value_(model.parameters(), 10)
utils.clip_grad_norm_(model.parameters(), 0.25)
optimizer.step()
avg_loss.update(loss.item(), q.size(0))
if vis and idx % args.visualize_freq == 0:
vis.update_loss(loss, epoch, idx, len(dataloader), "loss")
if idx > 0 and idx % args.print_freq == 0:
print_state(idx, epoch, len(dataloader), avg_loss.avg)
if (epoch+1) % 50 == 0:
save_checkpoint(model, args, epoch)
@torch.no_grad()
def evaluate(model, dataloader, criterion, epoch, args, device, vis=None):
"""Run model on validation set."""
# switch to evaluate mode
model = model.eval()
avg_loss = AverageMeter()
acc = 0.0
for i, sample in enumerate(dataloader):
q = sample['question']
lengths = sample['question_len']
img = sample["image"]
ans_label = sample['answer_id']
q = q.to(device)
img = img.to(device)
ans = ans_label.to(device)
output = model(img, q, lengths)
loss = criterion(output, ans)
avg_loss.update(loss.item(), q.size(0))
acc += accuracy(output, ans)
if vis and i % args.visualize_freq == 0:
vis.update_loss(loss, epoch, i, len(dataloader), "val_loss")
if i > 0 and i % args.print_freq == 0:
print_state(i, -1, len(dataloader), avg_loss.avg)
return acc
def save_checkpoint(model, args, epoch):
if not osp.exists(args.save_dir):
os.makedirs(args.save_dir)
state = {
"model": model.state_dict(),
"args": args
}
filename = 'vqa_checkpoint_{0}_{1}.pth'.format(args.arch, epoch+1)
torch.save(state, osp.join(args.save_dir, filename))
def print_state(idx, epoch, size, loss):
if epoch >= 0:
message = "Epoch: [{0}][{1}/{2}]\t\t".format(epoch, idx, size)
else:
message = "Test: [{0}/{1}]\t\t".format(idx, size)
print(message + 'Loss {loss:.4f}'.format(loss=loss))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
# self.avg = self.sum / self.count
if self.avg == 0:
self.avg = val
else:
self.avg = 0.95*self.avg + 0.05*val