title | toc | date | tags | top | |||
---|---|---|---|---|---|---|---|
110. Balanced Binary Tree |
false |
2017-10-30 |
|
110 |
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
在遍历树的每个结点的时候,调⽤函数height()
得到它的左右⼦树的深度。如果每个结点的左右⼦树的深度相差都不超过1,按照定义 它就是⼀棵平衡的⼆叉树。
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
if (Math.abs(height(root.left, 1) - height(root.right, 1)) > 1)
return false;
return isBalanced(root.left) && isBalanced(root.right);
}
求二叉树高度的方法heightOfTree
有两种方案。第一种是自顶向下计数的方法。还有一种是自底向上计数的方法。
// 自顶向下
private int height(TreeNode root, int height) {
if (root == null) return height;
return Math.max(height(root.left, height + 1),
height(root.right, height + 1));
}
// 自底向上
private int height(TreeNode root) {
if (root == null) return 0;
return Math.max(height(root.left), height(root.right)) + 1;
上⾯的代码固然简洁,但由于⼀个结点会被重复遍历多次,所以时间效率不⾼。如果⽤后序遍历的⽅式遍历⼆叉树的每⼀个结点,在遍历到⼀个结点之前就已经遍历了它的左右⼦树。只要在遍历每个结点的时候记录它的深度,就可以⼀边遍历⼀边判断每个结点是不是平衡的。
public boolean isBalanced(TreeNode root) {
return height(root) != -1;
}
private int height(TreeNode root) {
if (root == null) return 0;
int leftHeight = height(root.left);
if (leftHeight == -1) return -1;
int rightHeight = height(root.right);
if (rightHeight == -1) return -1;
if (Math.abs(leftHeight - rightHeight) > 1) return -1;
return Math.max(leftHeight, rightHeight) + 1;
由于只遍历了一遍二叉树,所以时间复杂度是$O(n)$. 从顶向下计数的方法在最坏情况下的复杂度是$O(n^2)$.