title | toc | date | tags | top | |||
---|---|---|---|---|---|---|---|
120. Triangle |
false |
2017-10-30 |
|
120 |
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note: Bonus point if you are able to do this using only
动态规划,关键是寻找最小路径和之间的关系:
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null) return 0;
int m = triangle.size();
int [][] pathSum = new int[m][m];
// initialize
for (int j = 0; j < m; j++)
pathSum[m - 1][j] = triangle.get(m - 1).get(j);
for (int i = m - 2; i >= 0; i--)
for (int j = 0; j <= i; j++)
pathSum[i][j] = triangle.get(i).get(j) +
Math.min(pathSum[i + 1][j], pathSum[i + 1][j + 1]);
return pathSum[0][0];
}
题目还提到了能不能把算法优化到$O(n)$的空间复杂度。观察
pathSum[i][j] = triangle.get(i).get(j) + Math.min(pathSum[i + 1][j], pathSum[i + 1][j + 1]);
等式左边总是第i行,右边总是i+1行,所以更新不重叠,只需要一个一维数组就行了。
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null) return 0;
int m = triangle.size();
int [] pathSum = new int[m];
// initialize
for (int j = 0; j < m; j++)
pathSum[j] = triangle.get(m - 1).get(j);
for (int i = m - 2; i >= 0; i--)
for (int j = 0; j <= i; j++)
pathSum[j] = triangle.get(i).get(j) + Math.min(pathSum[j], pathSum[j + 1]);
return pathSum[0];
}