title | toc | date | tags | top | ||
---|---|---|---|---|---|---|
221. Maximal Square |
false |
2017-10-30 |
|
221 |
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
Example:
Input: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 Output: 4
这道题目有点像LeetCode 53. Maximum Subarray。不过这道题目难了很多,从一维变成了二维,从连续子数组的最大和变成了连续矩阵的最大面积。应该来说,本质上没有发生变化,但是寻找对应的状态转移方程,难度大了许多。基本思路仿照Kadane's algorithm,也就是有maxEndingHere(i,j)
记录到以$(i,j)$为右下角的最大矩阵,maxSoFar(i,j)
记录从(0,0)到$(i,j)$的最大矩阵。
但是怎么求maxEndingHere(i, j)
呢?一个$(i,j)$为右下角的最大矩阵,它的左边、右边、左上角肯定都是1。
dp(i, j) = min(dp(i−1, j), dp(i−1, j−1), dp(i, j−1)) + 1.
完整的Java代码
public int maximalSquare(char[][] matrix) {
if (matrix == null) return 0;
int m = matrix.length, n = m > 0 ? matrix[0].length : 0;
int maxSquare = 0; //maxSoFar
int [][] dp = new int[m + 1][n + 1]; //maxEndingHere
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (matrix[i - 1][j - 1] == '1') {
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
if (dp[i][j] > maxSquare) maxSquare = dp[i][j];
}
}
}
return maxSquare*maxSquare;
}