title | toc | date | tags | top | ||
---|---|---|---|---|---|---|
265. Paint House II |
false |
2017-10-30 |
|
265 |
There are a row of n
houses, each house can be painted with one of the k
colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x k
cost matrix. For example, costs[0][0]
is the cost of painting house 0 with color 0; costs[1][2]
is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.
All costs are positive integers.
Example:
Given n = 3, k = 3, costs = [[14,2,11],[11,14,5],[14,3,10]]
return 10.
Explanation: house 0 is color 2, house 1 is color 3,
house 2 is color 2, 2 + 5 + 3 = 10
ChallengeCould: you solve it in
这道题目LeetCode要收费的,相应的LintCode链接。与LeetCode 256. Paint House一摸一样,把3变成$k$而已。代码思路一摸一样。
public int minCostII(int[][] costs) {
if (costs == null || costs.length == 0) return 0;
int[][] dp = costs.clone();
int k = dp[0].length;
int prevMin = Integer.MAX_VALUE;
for (int i = 1; i < dp.length; i++)
for (int j = 0; j < k; j++) {
// 求刷到前一栋房子的最小费用为prevMin
// 注意每个j对应的prevMin都不一样
prevMin = Integer.MAX_VALUE;
for (int kk = 1; kk < k; kk++)
if (dp[i - 1][(j + kk) % k] < prevMin)
prevMin = dp[i - 1][(j + kk) % k];
// 刷到第i栋房子,用j颜色的费用 =
// 求刷到前一栋房子i-1的最小费用 + 刷这一栋房子i的费用
dp[i][j] += prevMin;
}
// 求刷到最后一栋房子的最小费用
prevMin = Integer.MAX_VALUE;
for (int kk = 0; kk < k; kk++)
if (dp[dp.length - 1][kk] < prevMin)
prevMin = dp[dp.length - 1][kk];
return prevMin;
}
上面的代码可读性很差,尤其是下标的求余操作,把它封装成函数之后,不仅可读性增加了,而且执行速度也增加了:
/**
* @param costs: n x k cost matrix
* @return: an integer, the minimum cost to paint all houses
*/
public int minCostII(int[][] costs) {
if (costs == null || costs.length == 0) return 0;
int[][] dp = costs.clone();
int k = dp[0].length;
int prevMin = Integer.MAX_VALUE;
for (int i = 1; i < dp.length; i++)
for (int j = 0; j < k; j++) {
// 刷到第i栋房子,用j颜色的费用 =
// 求刷到前一栋房子i-1的最小费用 + 刷这一栋房子i的费用
dp[i][j] += minExpense(dp[i - 1], j);
}
return minExpense(dp[dp.length - 1], -1);
}
/**
* 求刷到前一栋房子的最小费用
* @param nums: 费用
* @param exclusive: 当前房子的颜色,被排除在前一栋房子的颜色中
* @return: 刷到前一栋房子的最小费用
*/
private int minExpense(int[] nums, int exclusive) {
int min = Integer.MAX_VALUE;
for (int k = 0; k < nums.length; k++)
if (k != exclusive && nums[k] < min)
min = nums[k];
return min;
}