title | toc | date | tags | top | |||
---|---|---|---|---|---|---|---|
98. Validate Binary Search Tree |
false |
2017-10-30 |
|
98 |
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output: true
Example 2:
5
/ \
1 4
/ \
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
这道题目题意非常清楚:确认二叉树是否为二叉搜索树。所以最笨的方法就是使用题目定义的三种条件去一一确认。使用前序遍历获得子树的节点,这里直接照搬144. Binary Tree Preorder Traversal的代码过来。时间复杂度为$O(n^2)$,空间复杂度为$O(n^2)$。
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
// 确认左子树节点都小于该节点
for(int i: preorderTraversal(root.left))
if (i >= root.val) return false;
// 确认右子树节点都大于该节点
for(int i: preorderTraversal(root.right))
if (i <= root.val) return false;
// 确认左子树和右子树也是二叉搜索树
return isValidBST(root.left) && isValidBST(root.right);
}
private List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<Integer>();
preorderTraversalHelper(root, list);
return list;
}
private void preorderTraversalHelper(TreeNode root, List<Integer> list) {
if (root == null) return;
list.add(root.val);
preorderTraversalHelper(root.left, list);
preorderTraversalHelper(root.right, list);
}
优化一下,在遍历的时候进行判断。由于右子树和左子树的判断条件不同,所以写了两个函数preorderTraversalLeft
、preorderTraversalRight
分别进行遍历并判断。返回的结果是,是否符合给定的条件。时间复杂度为$O(n^2)$,空间复杂度为$O(1)$。
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
if (!preorderTraversalLeft(root.left, root.val)) return false;
if (!preorderTraversalRight(root.right, root.val)) return false;
return isValidBST(root.left) && isValidBST(root.right);
}
private boolean preorderTraversalLeft(TreeNode root, int comparison) {
if (root == null) return true;
if (root.val >= comparison) return false;
return preorderTraversalLeft(root.left, comparison) &&
preorderTraversalLeft(root.right, comparison);
}
private boolean preorderTraversalRight(TreeNode root, int comparison) {
if (root == null) return true;
if (root.val <= comparison) return false;
return preorderTraversalRight(root.left, comparison) &&
preorderTraversalRight(root.right, comparison);
}
其实这道题目有个trick,因为二叉搜索树的中序遍历有个特点,它是个递增序列。所以只需要中序遍历二叉搜索树一次,然后看看中序遍历是否是递增序列即可。中序遍历的方法可以参照94. Binary Tree Inorder Traversal,这里直接照搬过来了。时间复杂度为$O(n)$,空间复杂度为$O(2n)$。空间复杂度为$O(2n)$的原因是一个List保存遍历结果,一个Stack保存将要遍历的节点。
public boolean isValidBST(TreeNode root) {
List<Integer> list = inOrderTraversal(root);
int i = 0;
while (++i < list.size()) {
if (list.get(i) <= list.get(i - 1)) return false;
}
return true;
}
private List<Integer> inOrderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()) {
// reach left
while (cur != null) {
stack.push(cur);
cur = cur.left;
}
cur = stack.pop();
list.add(cur.val);
cur = cur.right;
}
return list;
}
同样的,写完以后肯定会有疑问,是否可以边遍历边判断呢?答案当然是肯定的。既然中序遍历是一个递增序列,那么只要保存前面一个遍历节点prev,然后比较现在的节点cur是否大于前面节点prev就行了。用不到保存遍历结果。时间复杂度为$O(n)$,空间复杂度为$O(n)$。
public boolean isValidBST(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
int prevVal = Integer.MIN_VALUE;
int num = 0; // the lenght of the in-order traversal
while (cur != null || !stack.isEmpty()) {
// reach left
while (cur != null) {
stack.push(cur);
cur = cur.left;
}
cur = stack.pop();
if (num != 0 && cur.val <= prevVal) return false;
num++;
prevVal = cur.val;
cur = cur.right;
}
return true;
}
但是还是可以再快一点。可以进一步降低空间复杂度为$O(1)$。因为中序遍历有多种方法,最快的一种是带有帮助函数的递归。所以可以应用该种递归,然后在递归时进行判断。这种方法击败了100%,运行时间只有0ms。
private int prev; // 前一个节点的值
private int num = 0; // 遍历的节点个数
public boolean isValidBST(TreeNode root) {
prev = Integer.MIN_VALUE;
num = 0;
return inorderTraversalHelper(root);
}
private boolean inorderTraversalHelper(TreeNode root) {
if (root == null) return true;
if (!inorderTraversalHelper(root.left)) return false;
if (num++ != 0 && root.val <= prev) return false;
prev = root.val;
if (!inorderTraversalHelper(root.right)) return false;
return true;
}