This repos contains official Pytorch implementation of the paper: Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN, accepted at NeurIPS 2021 Workshop Bayesian Deep Learning
@inproceedings { kinakh2021informationtheoretic,
title = { Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN },
author = { Kinakh, Vitaliy and Drozdova, Mariia and Quétant, Guillaume and Golling, Tobias and Voloshynovskiy, Slava },
booktitle = { Bayesian Deep Learning NeurIPS workshop },
year = { 2021 }
}
- Animal Faces High Quality experiments
1.1 Animal Faces Demo
1.2 EigenGAN experiment
1.3 InfoSCC-GAN experiments
- Oneclass global discriminator, Hinge loss, each 2-nd iter classification regularization
- Oneclass global discriminator, Non saturating loss, each 2-nd iter classification regularization
- Multiclass global discriminator, Hinge loss, each 2-nd iteration classification regularization
- Oneclass patch discriminator, Hinge loss, each 2-nd iteration classification regularization
- Oneclass patch discriminator, Non-saturating loss, each 2-nd iteration classification regularization
- Oneclass path discriminator, LSGAN loss, each 2-nd iteration classification regularization
- Oneclass global discriminator, Hinge loss, each 2-nd iter classification regularization
- CelebA experiments
2.1 CelebA Demo with 10 attributes
2.2 CelebA Demo with 15 attributes - Run experiment
Each row: fix input label and latent variables , randomly change
Each row: fix input label , randomly change latent variables and
Each row: fix input label and latent variables , randomly change
Each row: fix input label , randomly change latent variables and
Each row: fix input label and latent variables , randomly change
Each row: fix input label , randomly change latent variables and
Each row: fix input label and latent variables , randomly change
Each row: fix input label , randomly change latent variables and
Each row: fix input label and latent variables , randomly change
Each row: fix input label , randomly change latent variables and
Each row: fix input label and latent variables , randomly change
Each row: fix input label , randomly change latent variables and