Skip to content

The official implementation of "Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN" accepted at NeurIPS 2021 Workshop Bayesian Deep Learning

Notifications You must be signed in to change notification settings

vkinakh/InfoSCC-GAN

Repository files navigation

Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN

This repos contains official Pytorch implementation of the paper: Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN, accepted at NeurIPS 2021 Workshop Bayesian Deep Learning

Paper Poster

Citation

@inproceedings { kinakh2021informationtheoretic,
    title = { Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN },
    author = { Kinakh, Vitaliy and Drozdova, Mariia and Quétant, Guillaume and Golling, Tobias and Voloshynovskiy, Slava },
    booktitle = { Bayesian Deep Learning NeurIPS workshop },
    year = { 2021 }
}

Demos

Contents

  1. Animal Faces High Quality experiments
    1.1 Animal Faces Demo
    1.2 EigenGAN experiment
    1.3 InfoSCC-GAN experiments
  2. CelebA experiments
    2.1 CelebA Demo with 10 attributes
    2.2 CelebA Demo with 15 attributes
  3. Run experiment

Animal Faces High Quality experiments

EigenGAN exploration

InfoSCC-GAN

Oneclass global discriminator, Hinge loss, each 2-nd iter classification regularization

latent variables exploration

Explore

Each row: fix input label and latent variables , randomly change

Explore and

Each row: fix input label , randomly change latent variables and

Explore

Fix and , explore all

Oneclass global discriminator, Non saturating loss, each 2-nd iter classification regularization

latent variables exploration

Explore

Each row: fix input label and latent variables , randomly change

Explore and

Each row: fix input label , randomly change latent variables and

Explore

Fix and , explore all

Multiclass global discriminator, Hinge loss, each 2-nd iter classification regularization

latent variables exploration

Explore

Each row: fix input label and latent variables , randomly change

Explore and

Each row: fix input label , randomly change latent variables and

Explore

Fix and , explore all

One class patch discriminator, Hinge loss, each 2-nd iter classification regularization

latent variables exploration

Explore

Each row: fix input label and latent variables , randomly change

Explore and

Each row: fix input label , randomly change latent variables and

Explore

Fix and , explore all

One class patch discriminator, Non-saturating loss, each 2-nd iter classification regularization

latent variables exploration

Explore

Each row: fix input label and latent variables , randomly change

Explore and

Each row: fix input label , randomly change latent variables and

Explore

Fix and , explore all

One class patch discriminator, LSGAN loss, each 2-nd iter classification regularization

latent variables exploration

Explore

Each row: fix input label and latent variables , randomly change

Explore and

Each row: fix input label , randomly change latent variables and

Explore

Fix and , explore all

CelebA experiments

About

The official implementation of "Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN" accepted at NeurIPS 2021 Workshop Bayesian Deep Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published