Skip to content

Commit

Permalink
[emulator] feat: veScale correctness emulator (#45)
Browse files Browse the repository at this point in the history
This pull request contains **veScale Correctness Emulator** that
emulates the results from multiple devices execution on a single device.

## Why veScale Correctness Emulator?
- Modern Frameworks promise **Single-Device Abstraction** for **nD
Parallelism**. But it is still missing a critical component that can
verify the ***correctness*** of **Single-Device Abstraction of nD
Parallelism**. For example, there are differences between the loss curve
of single device training and loss curves of 3D parallelism training.
- How do we know the difference is *correct*? To what extent is it
*correct*?
    - "Correct" differences come from nD Parallelism
        - Communication difference (e.g., ring allreduce)
        - Compute difference (e.g., matmul)
        - Hardware difference (e.g. FP16)
    - "Incorrect" differences come from bugs in
        - User configuration
        - User model code
        - System implementation code
        - Data loader
        - Model checkpoint
        - Random seed and offset

## What is veScale Correctness Emulator?

- **veScale Correctness Emulator** verifies nD prarllelism correctness
by emulating nD parallel training on a single device,
- **veScale Correctness Emulator** isolates correctness at different
layers and seperates differences come from nD parallelism with
differences come from bugs.
- **veScale Correctness Emulator** achieves bitwise correctness in three
levels: NCCL collectives, mesh collectives, and DTensor.

### NCCL Emulation
We are using the NCCL version 2.19.3 code as a reference for our
emulation implementation. The code can be found at
[NVIDIA/nccl](https://github.com/NVIDIA/nccl/tree/v2.19.3-1).

**veScale Correctness Emulator** can perfectly emulate NCCL collective
APIs' results. This is achieved by implementing the same NCCL collective
algorithms and modeling NCCL's computation order via calculating the
correct chunk size.

### Collective APIs Emulation
These are standalone collective APIs which emulate the results from
collective APIs of NCCL on a single device.
Supported APIs:
- `all_reduce`
- `all_gather`
- `reduce_scatter`
- `all_to_all`

### Mesh Collective APIs Emulation
These are standalone mesh collective APIs which emulate the results from
mesh collective APIs of PyTorch on a single device.
Supported APIs:
- `mesh_all_reduce`
- `mesh_all_gather`
- `mesh_reduce_scatter`
- `mesh_all_to_all`
- `mesh_broadcast`
- `mesh_scatter`

### DTensor Redistribution Function Emulation
These are standalone DTensor redistribution functions which emulate the
results from DTensor redistribution functions of PyTorch on a single
device.
- `R2R`
- `R2S`
- `S2R`
- `P2R`

Comming soon: A full list of emulator DTensor redistribution functions
will be added to support nD parallelisms including DP, TP, SP, PP, EP,
and OP.

## How does veScale Correctness Emulator work?
**veScale Correctness Emulator** achieves bitwise correctness in
emulating NCCL collectives APIs results. This is done by implementing
the same NCCL collective algorithms and modeling NCCL's algorithm and
protocol selection function and chunk size calculation process to ensure
the same computation order as NCCL.

Based on the emulation functions for NCCL collectives, **veScale
Correctness Emulator** implements a global-view emulator `ProcessGroup`
and `DeviceMesh` that contain all the process groups in the enviroment,
while PyTorch's `ProcessGroup` and `DeviceMesh` only view process groups
related to the current ranks.

Aided by the global-view emulator `ProcessGroup` and `DeviceMesh`,
**veScale Correctness Emulator** can emulate the results of collective
APIs, mesh collective APIs, and DTensor redistribution functions on a
single device.
  • Loading branch information
jiannanWang authored Aug 10, 2024
1 parent 70db7e7 commit e439aa9
Show file tree
Hide file tree
Showing 38 changed files with 5,698 additions and 0 deletions.
Binary file added docs/pictures/emulator.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/pictures/emulator_distributed.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/pictures/emulator_dtensor.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/pictures/emulator_mesh_collectives.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/pictures/training_losses_diff_in_bf16.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file added test/emulator/__init__.py
Empty file.
35 changes: 35 additions & 0 deletions test/emulator/common_emulator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
################################################################################
#
# Copyright 2023 ByteDance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
################################################################################

from typing import Callable, Tuple, Dict, Any
from functools import wraps

TestFunc = Callable[[object], object]


# wrapper to initialize comms (process group) within emulator
def with_comms_emulator(func: TestFunc) -> TestFunc:
assert func is not None

@wraps(func) # pyre-ignore[6]
def wrapper(self, *args: Tuple[object], **kwargs: Dict[str, Any]) -> None: # type: ignore[misc]
# launch
self.init_emulator_pg()
func(self, *args, **kwargs) # type: ignore[misc]
self.destroy_emulator_pg()

return wrapper
212 changes: 212 additions & 0 deletions test/emulator/test_distributed.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
################################################################################
#
# Copyright 2023 ByteDance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
################################################################################


import os
import torch
import torch.distributed as dist
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)

import vescale
from vescale.emulator.distributed import ProcessGroup, dump_nccl_graph_for_pg
from vescale.emulator.reduce_kernel import ReduceOp

from vescale.emulator.all_gather import expand_tensor_list
from vescale.emulator.reduce_scatter import contract_tensor_list
from common_dtensor import DTensorTestBase, with_comms
from emulator.common_emulator import with_comms_emulator
from vescale.emulator.utils import emulator_reduce_op_to_torch


class TestDistributed(DTensorTestBase):
@property
def world_size(self) -> int:
return 4

def init_emulator_pg(self):
torch.manual_seed(0)
backend = "nccl"
world_size = self.world_size

vescale.emulator.distributed.init_process_group(backend=backend, world_size=world_size, rank=0)
vescale.emulator.distributed.set_rank(0)
self.pg: ProcessGroup = vescale.emulator.distributed._world.default_pg
self.torch_pg = torch.distributed.distributed_c10d._get_default_group()
dump_nccl_graph_for_pg(self.pg, self.torch_pg, self.rank)

def destroy_emulator_pg(self):
vescale.emulator.distributed.destroy_process_group()

@with_comms
@with_comms_emulator
def test_process_group(self):
ground_truth_pg_group_ranks = [{0: 0, 1: 1, 2: 2, 3: 3}, {0: 0, 2: 1}, {1: 0, 3: 1}, {0: 0, 1: 1}, {2: 0, 3: 1}]
for count, value in enumerate(vescale.emulator.distributed._world.pg_group_ranks.values()):
self.assertEqual(value, ground_truth_pg_group_ranks[count])

@with_comms
@with_comms_emulator
# @parametrize("reduce_op", [ReduceOp.SUM, ReduceOp.PRODUCT, ReduceOp.MAX, ReduceOp.MIN])
@parametrize("reduce_op", [ReduceOp.SUM])
@parametrize("nelement", [1, 1024, 1024 * 1024])
def test_all_reduce(self, nelement, reduce_op):
nranks = self.pg.size()
tree_structure = [[0, 1], [2, 3]]
torch_rank = self.rank
device = f"cuda:{torch_rank}"

input_file = "input_distributed.pt"
if self.rank == 0:
# To ensure all ranks have the same input
input_list = []
for i in range(nranks):
input_list.append(torch.randn((nelement,), device="cuda"))
torch.save(input_list, input_file)
dist.barrier()

data_list = torch.load(input_file)
data_list = [data.to(device) for data in data_list]
ground_truth = [data_list[rank].clone().to(device) if rank == torch_rank else [] for rank in range(nranks)]
torch_reduce_op = emulator_reduce_op_to_torch(reduce_op)

torch.distributed.all_reduce(ground_truth[torch_rank], torch_reduce_op)
self.pg.all_reduce(data_list, op=reduce_op, tree_structure=tree_structure)

self.assertTrue(torch.equal(data_list[torch_rank], ground_truth[torch_rank]))

if self.rank == 0:
if os.path.exists(input_file):
os.remove(input_file)

@with_comms
@with_comms_emulator
@parametrize("nelement", [1, 1024, 1024 * 1024])
def test_all_gather(self, nelement):
nranks = self.pg.size()
torch_rank = self.rank
device = f"cuda:{torch_rank}"

input_file = "input_distributed.pt"
if self.rank == 0:
# To ensure all ranks have the same input
input_list = []
for i in range(nranks):
input_list.append(torch.randn((nelement,), device="cuda"))
torch.save(input_list, input_file)
dist.barrier()

data_list = torch.load(input_file)
data_list = [data.to(device) for data in data_list]
ground_truth_list = [torch.zeros(nelement).to(device) for _ in range(nranks)]
output_list = expand_tensor_list(data_list)

torch.distributed.all_gather(ground_truth_list, data_list[torch_rank])
self.pg.all_gather(output_list, data_list)

for gt, data in zip(ground_truth_list, data_list):
self.assertTrue(torch.equal(gt, data))

if self.rank == 0:
if os.path.exists(input_file):
os.remove(input_file)

@with_comms
@with_comms_emulator
# @parametrize("reduce_op", [ReduceOp.SUM, ReduceOp.PRODUCT, ReduceOp.MAX, ReduceOp.MIN])
@parametrize("reduce_op", [ReduceOp.SUM])
@parametrize("nelement", [1, 1024, 1024 * 1024])
def test_reduce_scatter(self, nelement, reduce_op):
nranks = self.pg.size()
torch_rank = self.rank
device = f"cuda:{torch_rank}"

input_file = "input_distributed.pt"
if self.rank == 0:
# To ensure all ranks have the same input
input_list = []
for i in range(nranks):
input_list.append([])
for j in range(nranks):
input_list[i].append(torch.randn((nelement,), device="cuda"))
torch.save(input_list, input_file)
dist.barrier()

data_list = torch.load(input_file)
data_list = [[elem.to(device) for elem in data] for data in data_list]
ground_truth = torch.zeros(nelement).to(device)
outputs = contract_tensor_list(data_list)
torch_reduce_op = emulator_reduce_op_to_torch(reduce_op)

torch.distributed.reduce_scatter(ground_truth, data_list[torch_rank], torch_reduce_op)

self.pg.reduce_scatter(outputs, data_list, op=reduce_op)

result = outputs[torch_rank]
self.assertTrue(torch.equal(result, ground_truth))

if self.rank == 0:
if os.path.exists(input_file):
os.remove(input_file)

@with_comms
@with_comms_emulator
@parametrize("nelement", [1, 1024, 1024 * 1024])
def test_all_to_all(self, nelement):
nranks = self.pg.size()
torch_rank = self.rank
device = f"cuda:{torch_rank}"

input_file = "input_distributed.pt"
if self.rank == 0:
# To ensure all ranks have the same input
input_list = []
for i in range(nranks):
input_list.append([])
for j in range(nranks):
input_list[i].append(torch.randn((nelement,), device="cuda"))
torch.save(input_list, input_file)
dist.barrier()

data_list = torch.load(input_file)
outputs_list = []
ground_truth_list = []
for i in range(nranks):
outputs_list.append([])
for j in range(nranks):
data_list[i][j] = data_list[i][j].to(device)
outputs_list[i].append((torch.zeros(nelement)).to(device))
ground_truth_list.append((torch.zeros(nelement)).to(device))

torch.distributed.all_to_all(ground_truth_list, data_list[torch_rank])
self.pg.all_to_all(outputs_list, data_list)

for gt, output in zip(ground_truth_list, outputs_list[torch_rank]):
self.assertTrue(torch.equal(gt, output))

if self.rank == 0:
if os.path.exists(input_file):
os.remove(input_file)


instantiate_parametrized_tests(TestDistributed)

if __name__ == "__main__":
run_tests()
118 changes: 118 additions & 0 deletions test/emulator/test_dtensor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
################################################################################
# Copyright (c) Meta Platforms, Inc. and affiliates
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
################################################################################
# Modification Copyright 2023 ByteDance Ltd. and/or its affiliates.
################################################################################

import os

import numpy as np
from common_dtensor import (
DTensorTestBase, # skip_unless_torch_gpu,
with_comms,
)
from typing import List, cast

import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
from torch.testing._internal.common_utils import run_tests

import vescale
from vescale.dtensor.dtensor import DTensor
from vescale.dtensor.placement_types import Placement, Replicate, Shard

from vescale.emulator.device_mesh import dump_nccl_graph_for_mesh
from vescale.emulator.distributed import ProcessGroup, dump_nccl_graph_for_pg
from vescale.emulator.comm_api import distribute_tensor, redistribute_dtensor
from vescale.emulator.device_mesh import DeviceMesh
from vescale.emulator.emulator_instrumentation import EmulatorInstrumentation
from emulator.common_emulator import with_comms_emulator


class DistMatrixOpsTest(DTensorTestBase):
@property
def world_size(self) -> int:
return 4

def init_emulator_pg(self):
torch.manual_seed(0)
backend = "nccl"
world_size = self.world_size

vescale.emulator.distributed.init_process_group(backend=backend, world_size=world_size, rank=0)
vescale.emulator.distributed.set_rank(0)
# dump default process group
self.pg: ProcessGroup = vescale.emulator.distributed._world.default_pg
self.torch_pg = torch.distributed.distributed_c10d._get_default_group()
dump_nccl_graph_for_pg(self.pg, self.torch_pg, self.rank)

# dump for other process groups
mesh_tensor = list(range(world_size))
self.vescale_mesh = vescale.dtensor.device_mesh.DeviceMesh(self.device_type, mesh_tensor)
self.mesh = DeviceMesh(self.device_type, mesh_tensor)
dump_nccl_graph_for_mesh(self.mesh, self.vescale_mesh)

def destroy_emulator_pg(self):
vescale.emulator.distributed.destroy_process_group()

@with_comms
@with_comms_emulator
def test_mm(self):
device_mesh = self.mesh
vescale_device_mesh = vescale.dtensor.device_mesh.DeviceMesh(self.device_type, list(range(self.world_size)))
device = f"cuda:{self.rank}"
replica_spec = Replicate()

input_file = "input_dtensors.pt"
if self.rank == 0:
t1 = torch.randn(12, 8, requires_grad=True).cuda()
t2 = torch.randn(8, 12, requires_grad=True).cuda()
torch.save((t1, t2), input_file)
dist.barrier()

t1, t2 = torch.load(input_file)
t1 = t1.to(device)
t2 = t2.to(device)
t1_list = [t1.clone().detach().requires_grad_() for _ in range(self.world_size)]
t2_list = [t2.clone().detach().requires_grad_() for _ in range(self.world_size)]

def test_placement_comb(placements1: List[Placement], placements2: List[Placement]) -> None:
dt1_list = distribute_tensor(t1_list, device_mesh, placements1)
dt2_list = distribute_tensor(t2_list, device_mesh, placements2)

# Emulator replace the given pytorch function to accpet lists of tensors as input
func_list = ["mm"]
indices = [(0, 1)]
with EmulatorInstrumentation(torch, func_list, indices):
dist_res_list = torch.mm(dt1_list, dt2_list)
dist_res_list = redistribute_dtensor(dist_res_list, device_mesh, [replica_spec])

dt1 = vescale.distribute_tensor(t1.clone().detach().requires_grad_(), vescale_device_mesh, placements1)
dt2 = vescale.distribute_tensor(t2.clone().detach().requires_grad_(), vescale_device_mesh, placements2)
dist_res: DTensor = cast(DTensor, torch.mm(dt1, dt2)).redistribute(vescale_device_mesh, [replica_spec])

for dist_res_emu in dist_res_list:
self.assertTrue(torch.equal(dist_res.to_local(), dist_res_emu.to_local()))

shard_specs_comb = [
(Shard(dim=0), Replicate()),
(Shard(dim=1), Shard(dim=0)),
(Replicate(), Shard(dim=1)),
(Replicate(), Replicate()),
]

for spec in shard_specs_comb:
test_placement_comb([spec[0]], [spec[1]])

if self.rank == 0:
if os.path.exists(input_file):
os.remove(input_file)


if __name__ == "__main__":
run_tests()
Loading

0 comments on commit e439aa9

Please sign in to comment.