This repository is no longer maintained. I am no longer actively maintaining iCAN. Please refer to our ECCV 2020 work DRG for a stronger HOI detection framework in PyTorch.
Official TensorFlow implementation for iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection.
See the project page for more details. Please contact Chen Gao ([email protected]) if you have any questions.
This codebase was developed and tested with Python2.7, Tensorflow 1.1.0 or 1.2.0, CUDA 8.0 and Ubuntu 16.04.
- Clone the repository.
git clone https://github.com/vt-vl-lab/iCAN.git
- Download V-COCO and HICO-DET dataset. Setup V-COCO and COCO API. Setup HICO-DET evaluation code.
chmod +x ./misc/download_dataset.sh ./misc/download_dataset.sh # Assume you cloned the repository to `iCAN_DIR'. # If you have downloaded V-COCO or HICO-DET dataset somewhere else, you can create a symlink # ln -s /path/to/your/v-coco/folder Data/ # ln -s /path/to/your/hico-det/folder Data/
- Download detection results
chmod +x ./misc/download_detection_results.sh ./misc/download_detection_results.sh
- Evaluate V-COCO detection results using iCAN
python tools/Diagnose_VCOCO.py eval Results/300000_iCAN_ResNet50_VCOCO.pkl
- Evaluate V-COCO detection results using iCAN (Early fusion)
python tools/Diagnose_VCOCO.py eval Results/300000_iCAN_ResNet50_VCOCO_Early.pkl
- Evaluate HICO-DET detection results using iCAN
Here we evaluate our best detection results under
cd Data/ho-rcnn matlab -r "Generate_detection; quit" cd ../../
Results/HICO_DET/1800000_iCAN_ResNet50_HICO
. If you want to evaluate a different detection result, please specify the filename inData/ho-rcnn/Generate_detection.m
accordingly.
- Diagnose V-COCO detection results using iCAN
python tools/Diagnose_VCOCO.py diagnose Results/300000_iCAN_ResNet50_VCOCO.pkl
- Diagnose V-COCO detection results using iCAN (Early fusion)
python tools/Diagnose_VCOCO.py diagnose Results/300000_iCAN_ResNet50_VCOCO_Early.pkl
- Download COCO pre-trained weights and training data
chmod +x ./misc/download_training_data.sh ./misc/download_training_data.sh
- Train an iCAN on V-COCO
python tools/Train_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO --num_iteration 300000
- Train an iCAN (Early fusion) on V-COCO
python tools/Train_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO_Early --num_iteration 300000
- Train an iCAN on HICO-DET
python tools/Train_ResNet_HICO.py --num_iteration 1800000
- Test an iCAN on V-COCO
python tools/Test_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO --num_iteration 300000
- Test an iCAN (Early fusion) on V-COCO
python tools/Test_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO_Early --num_iteration 300000
- Test an iCAN on HICO-DET
python tools/Test_ResNet_HICO.py --num_iteration 1800000
Check tools/Visualization.ipynb
to see how to visualize the detection results.
- To get the best performance, we use Detectron as our object detector. For a simple demo purpose, we use tf-faster-rcnn in this section instead.
- Clone and setup the tf-faster-rcnn repository.
cd $iCAN_DIR chmod +x ./misc/setup_demo.sh ./misc/setup_demo.sh
- Put your own images to
demo/
folder. - Detect all objects
# images are saved in $iCAN_DIR/demo/ python ../tf-faster-rcnn/tools/Object_Detector.py --img_dir demo/ --img_format png --Demo_RCNN demo/Object_Detection.pkl
- Detect all HOIs
python tools/Demo.py --img_dir demo/ --Demo_RCNN demo/Object_Detection.pkl --HOI_Detection demo/HOI_Detection.pkl
- Check
tools/Demo.ipynb
to visualize the detection results.
If you find this code useful for your research, please consider citing the following papers:
@inproceedings{gao2018ican,
author = {Gao, Chen and Zou, Yuliang and Huang, Jia-Bin},
title = {iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection},
booktitle = {British Machine Vision Conference},
year = {2018}
}
Codes are built upon tf-faster-rcnn. We thank Jinwoo Choi for the code review.