An API to explore the OpenSpending database.
- An analytical API powered by Babbage
- A search API to access package-level meta data
- A search API to access fiscal line-level data
The API is written in Python 3 and uses Flask blueprints.
Clone the repo, install dependencies from pypi, and run the server.
For development, create a .env
file and add environmental variables:
# Address for the postgres instance, e.g. postgresql://postgres@db/postgres
OS_API_ENGINE=postgresql://postgres@db/postgres
# Address of elasticsearch server
OS_ELASTICSEARCH_ADDRESS=localhost:9200
# Address of Redis instance
OS_API_CACHE=redis
# Check health of ElasticSearch before starting app (optional)
OS_CHECK_ES_HEALTHY='True'
With the backing services available, a development server can be started with:
python dev_server.py
/api/3/info/<dataset>/package
- Returns the Fiscal Data-Pacakge for this dataset
/api/3/cubes
:- Returns a list of the available datasets in the store
/api/3/cubes/<dataset>/model
:- Returns the
babbage
model for the dataset. This is the model which is used when querying the data.
- Returns the
/api/3/cubes/<dataset>/facts
:- Returns individual entries from the dataset in non-aggregated form.
- Parameters:
cut
- filters on the data (field_name:value
,field_name:value|field_name:value
etc.)fields
- fields to returnorder
- data ordering (e.g.field_name:desc
)pagesize
- number of entries in one batch of returned datapage
- page selection
/api/3/cubes/<dataset>/members/<dimension>
- Returns the distinct set of values for a specific dimension.
- Parameters:
cut
,order
,page
andpagesize
as above
/api/3/cubes/<dataset>/aggregate
- Returns an aggregate of the data in the specified dataset.
- Parameters:
cut
,order
,page
andpagesize
as abovedrilldown
- group by these dimensions (e.g.field_name_1|field_name_2
)aggregates
- which measures to aggregate (and what function to perform (e.g.amount.sum
,count
)
You need a few services running, namely Elasticsearch v5.x running on localhost:9200 and PostgreSQL.
Then set a few environment variables (your DB connection string might vary):
$ export OS_API_ENGINE=postgresql://postgres@/postgres
$ export DPP_DB_ENGINE=postgresql://postgres@/postgres
$ export OS_ELASTICSEARCH_ADDRESS=localhost:9200
$ export ELASTICSEARCH_ADDRESS=localhost:9200
Install a few dependencies:
$ npm install -g os-types
$ sudo apt-get install libleveldb-dev libleveldb1 libpq-dev python3-dev
$ pip3 install tox coveralls 'datapackage-pipelines[speedup]>=2.0.0' 'datapackage-pipelines-fiscal>=1.2.0' psycopg2-binary
# or for MacOS
$ npm install -g os-types
$ brew install leveldb
$ pip3 install tox coveralls 'datapackage-pipelines[speedup]>=2.0.0' 'datapackage-pipelines-fiscal>=1.2.0' psycopg2-binary
Fill the local DB with a sample fiscal data:
$ cd tests/sample_data && dpp run --verbose --concurrency=8 all
Then run:
$ tox