-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
✨ Add new daily and weekly exporters
- Loading branch information
Showing
2 changed files
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import pandas as pd | ||
from dateutil.relativedelta import relativedelta | ||
|
||
from ddj_cloud.scrapers.talsperren.common import Exporter | ||
from ddj_cloud.utils.date_and_time import local_today_midnight | ||
|
||
|
||
class DailyExporter(Exporter): | ||
filename = "daily" | ||
|
||
def run(self, df_base: pd.DataFrame) -> pd.DataFrame: | ||
df_base.insert(0, "id", df_base["federation_name"] + "_" + df_base["name"]) | ||
|
||
# Drop all data before one month ago (plus some extra so we don't underfill any medians/means) | ||
df_base = df_base.loc[ | ||
df_base["ts_measured"] > local_today_midnight() - relativedelta(months=3) | ||
] | ||
|
||
# First, set the 'ts_measured' column as the DataFrame index | ||
df_base.set_index("ts_measured", inplace=True) | ||
df_base.index = df_base.index.tz_convert("Europe/Berlin") # type: ignore | ||
|
||
# Group by 'federation_name' and 'name', then resample to daily frequency using median | ||
df_daily: pd.DataFrame = ( | ||
df_base.groupby( | ||
["id"], | ||
) | ||
.resample("D") | ||
.aggregate( # type: ignore | ||
{ | ||
"content_mio_m3": "median", | ||
"capacity_mio_m3": "median", | ||
} | ||
) | ||
) | ||
|
||
# Create a new MultiIndex with all permutations of 'id' and 'ts_measured' | ||
idx = df_daily.index | ||
multi_idx = pd.MultiIndex.from_product( | ||
[idx.get_level_values(level=0).unique(), idx.get_level_values(level=1).unique()], | ||
names=["id", "ts_measured"], | ||
) | ||
|
||
# Reindex DataFrame and forward fill missing values from those of the same station | ||
df_daily = df_daily.reindex(multi_idx) | ||
df_daily = df_daily.groupby(level=0).ffill() | ||
|
||
# Reconstruct the 'federation_name' (and 'name') columns | ||
# df_weekly["federation_name"], df_weekly["name"] = ( | ||
# df_weekly.index.get_level_values(level=0).str.split("_", 1).str | ||
# ) | ||
df_daily["federation_name"] = ( | ||
df_daily.index.get_level_values(level=0).str.split("_", n=1).str[0] | ||
) | ||
|
||
# Drop the 'id' column from the index | ||
df_daily.reset_index(level=0, drop=True, inplace=True) | ||
df_daily.reset_index(inplace=True) | ||
df_daily.set_index("ts_measured", inplace=True) | ||
|
||
# Create a new dataframe with columns for each "federation_name" | ||
# with the mean fill_percent for each week across all reservoirs | ||
# of that federation | ||
df_daily_fed = df_daily.groupby(["ts_measured", "federation_name"]).aggregate( | ||
{ | ||
"content_mio_m3": sum_nan, | ||
"capacity_mio_m3": sum_nan, | ||
} | ||
) | ||
|
||
# Add "fill_percent" columns | ||
df_daily_fed["fill_percent"] = ( | ||
df_daily_fed["content_mio_m3"] / df_daily_fed["capacity_mio_m3"] * 100 | ||
) | ||
|
||
# Drop "content_mio_m3" and "capacity_mio_m3" columns | ||
df_daily_fed.drop(columns=["content_mio_m3", "capacity_mio_m3"], inplace=True) | ||
|
||
df_daily_fed = df_daily_fed.unstack() | ||
df_daily_fed.columns = df_daily_fed.columns.droplevel(0) | ||
|
||
# Add "Gesamt" column | ||
df_weekly_gesamt = df_daily.groupby(["ts_measured"]).aggregate( | ||
{ | ||
"content_mio_m3": sum_nan, | ||
"capacity_mio_m3": sum_nan, | ||
} | ||
) | ||
df_weekly_gesamt["fill_percent"] = ( | ||
df_weekly_gesamt["content_mio_m3"] / df_weekly_gesamt["capacity_mio_m3"] * 100 | ||
) | ||
df_weekly_gesamt.drop(columns=["content_mio_m3", "capacity_mio_m3"], inplace=True) | ||
df_weekly_gesamt.columns = ["Gesamt"] | ||
df_daily_fed = df_daily_fed.join(df_weekly_gesamt, how="outer") | ||
|
||
df_daily_fed.reset_index(inplace=True) | ||
|
||
# Drop all data before one month ago cleanly | ||
df_daily_fed = df_daily_fed.loc[ | ||
df_daily_fed["ts_measured"] > local_today_midnight() - relativedelta(months=1) | ||
] | ||
|
||
df_daily_fed.rename(columns={"ts_measured": "date"}, inplace=True) | ||
|
||
# Convert datetime to iso date string | ||
df_daily_fed["date"] = df_daily_fed["date"].dt.strftime("%Y-%m-%d") | ||
|
||
return df_daily_fed | ||
|
||
|
||
def sum_nan(x): | ||
return x.sum(min_count=1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
import pandas as pd | ||
from dateutil.relativedelta import relativedelta | ||
|
||
from ddj_cloud.scrapers.talsperren.common import Exporter | ||
from ddj_cloud.utils.date_and_time import local_today_midnight | ||
|
||
|
||
class WeeklyExporter(Exporter): | ||
filename = "weekly" | ||
|
||
def run(self, df_base: pd.DataFrame) -> pd.DataFrame: | ||
df_base.insert(0, "id", df_base["federation_name"] + "_" + df_base["name"]) | ||
|
||
# Drop all data before one year ago (plus some extra so we don't underfill any medians/means) | ||
df_base = df_base.loc[ | ||
df_base["ts_measured"] > local_today_midnight() - relativedelta(years=1, weeks=3) | ||
] | ||
|
||
# First, set the 'ts_measured' column as the DataFrame index | ||
df_base.set_index("ts_measured", inplace=True) | ||
df_base.index = df_base.index.tz_convert("Europe/Berlin") # type: ignore | ||
|
||
# Group by 'federation_name' and 'name', then resample to daily frequency using median | ||
df_weekly: pd.DataFrame = ( | ||
df_base.groupby( | ||
["id"], | ||
) | ||
.resample("W") | ||
.aggregate( # type: ignore | ||
{ | ||
"content_mio_m3": "median", | ||
"capacity_mio_m3": "median", | ||
} | ||
) | ||
) | ||
|
||
# Create a new MultiIndex with all permutations of 'id' and 'ts_measured' | ||
idx = df_weekly.index | ||
multi_idx = pd.MultiIndex.from_product( | ||
[idx.get_level_values(level=0).unique(), idx.get_level_values(level=1).unique()], | ||
names=["id", "ts_measured"], | ||
) | ||
|
||
# Reindex DataFrame and forward fill missing values from those of the same station | ||
df_weekly = df_weekly.reindex(multi_idx) | ||
df_weekly = df_weekly.groupby(level=0).ffill() | ||
|
||
# Reconstruct the 'federation_name' (and 'name') columns | ||
# df_weekly["federation_name"], df_weekly["name"] = ( | ||
# df_weekly.index.get_level_values(level=0).str.split("_", 1).str | ||
# ) | ||
df_weekly["federation_name"] = ( | ||
df_weekly.index.get_level_values(level=0).str.split("_", n=1).str[0] | ||
) | ||
|
||
# Drop the 'id' column from the index | ||
df_weekly.reset_index(level=0, drop=True, inplace=True) | ||
df_weekly.reset_index(inplace=True) | ||
df_weekly.set_index("ts_measured", inplace=True) | ||
|
||
# Create a new dataframe with columns for each "federation_name" | ||
# with the mean fill_percent for each week across all reservoirs | ||
# of that federation | ||
df_weekly_fed = df_weekly.groupby(["ts_measured", "federation_name"]).aggregate( | ||
{ | ||
"content_mio_m3": sum_nan, | ||
"capacity_mio_m3": sum_nan, | ||
} | ||
) | ||
|
||
# Add "fill_percent" columns | ||
df_weekly_fed["fill_percent"] = ( | ||
df_weekly_fed["content_mio_m3"] / df_weekly_fed["capacity_mio_m3"] * 100 | ||
) | ||
|
||
# Drop "content_mio_m3" and "capacity_mio_m3" columns | ||
df_weekly_fed.drop(columns=["content_mio_m3", "capacity_mio_m3"], inplace=True) | ||
|
||
df_weekly_fed = df_weekly_fed.unstack() | ||
df_weekly_fed.columns = df_weekly_fed.columns.droplevel(0) | ||
|
||
# Add "Gesamt" column | ||
df_weekly_gesamt = df_weekly.groupby(["ts_measured"]).aggregate( | ||
{ | ||
"content_mio_m3": sum_nan, | ||
"capacity_mio_m3": sum_nan, | ||
} | ||
) | ||
df_weekly_gesamt["fill_percent"] = ( | ||
df_weekly_gesamt["content_mio_m3"] / df_weekly_gesamt["capacity_mio_m3"] * 100 | ||
) | ||
df_weekly_gesamt.drop(columns=["content_mio_m3", "capacity_mio_m3"], inplace=True) | ||
df_weekly_gesamt.columns = ["Gesamt"] | ||
df_weekly_fed = df_weekly_fed.join(df_weekly_gesamt, how="outer") | ||
|
||
df_weekly_fed.reset_index(inplace=True) | ||
|
||
# Drop all data before one year ago cleanly | ||
df_weekly_fed = df_weekly_fed.loc[ | ||
df_weekly_fed["ts_measured"] > local_today_midnight() - relativedelta(years=1) | ||
] | ||
|
||
df_weekly_fed.rename(columns={"ts_measured": "date"}, inplace=True) | ||
|
||
# Use start of week as date instead of end of week | ||
# df_weekly_fed["date"] = df_weekly_fed["date"] - to_offset("6D") | ||
|
||
# Convert date to ISO Week format | ||
df_weekly_fed["date"] = df_weekly_fed["date"].dt.strftime("%G-W%V") | ||
|
||
return df_weekly_fed | ||
|
||
|
||
def sum_nan(x): | ||
return x.sum(min_count=1) |