@[TOC](使用imgaug图像数据增强库对影像上多个Bounding Boxes进行增强)
相较于Augmentor,imgaug具有更多的功能,比如对影像增强的同时,对keypoint, bounding box进行相应的变换。例如在目标检测的过程中,训练集包括影像及其对应的bounding box文件,在对影像增强的时候,同时解算出bounding box 相应变换的坐标生成对应的bounding box文件。
安装依赖库
pip install six numpy scipy matplotlib scikit-image opencv-python imageio
安装imgaug
方式一(安装github最新版本):
pip install git+https://github.com/aleju/imgaug
方式二(安装pypi版本):
pip install imgaug
读取xml文件并使用ElementTree对xml文件进行解析,找到每个object的坐标值。
def change_xml_annotation(root, image_id, new_target):
new_xmin = new_target[0]
new_ymin = new_target[1]
new_xmax = new_target[2]
new_ymax = new_target[3]
in_file = open(os.path.join(root, str(image_id) + '.xml')) # 这里root分别由两个意思
tree = ET.parse(in_file)
xmlroot = tree.getroot()
object = xmlroot.find('object')
bndbox = object.find('bndbox')
xmin = bndbox.find('xmin')
xmin.text = str(new_xmin)
ymin = bndbox.find('ymin')
ymin.text = str(new_ymin)
xmax = bndbox.find('xmax')
xmax.text = str(new_xmax)
ymax = bndbox.find('ymax')
ymax.text = str(new_ymax)
tree.write(os.path.join(root, str("%06d" % (str(id) + '.xml'))))
产生一个处理图片的Sequential。
# 影像增强
seq = iaa.Sequential([
iaa.Flipud(0.5), # vertically flip 20% of all images
iaa.Fliplr(0.5), # 镜像
iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect BBs
iaa.GaussianBlur(sigma=(0, 3.0)), # iaa.GaussianBlur(0.5),
iaa.Affine(
translate_px={"x": 15, "y": 15},
scale=(0.8, 0.95),
rotate=(-30, 30)
) # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
])
先读取该影像对应xml文件,获取所有目标的bounding boxes,然后依次计算每个box变化后的坐标。
seq_det = seq.to_deterministic() # 保持坐标和图像同步改变,而不是随机
# 读取图片
img = Image.open(os.path.join(IMG_DIR, name[:-4] + '.jpg'))
# sp = img.size
img = np.asarray(img)
# bndbox 坐标增强
for i in range(len(bndbox)):
bbs = ia.BoundingBoxesOnImage([
ia.BoundingBox(x1=bndbox[i][0], y1=bndbox[i][1], x2=bndbox[i][2], y2=bndbox[i][3]),
], shape=img.shape)
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
boxes_img_aug_list.append(bbs_aug)
# 此处运用了一个max,一个min (max是为了方式变化后的box小于1,min是为了防止变化后的box的坐标超出图片,在做faster r-cnn训练的时候,box的坐标会减1,若坐标小于1,就会报错,当然超出图像范围也会报错)
n_x1 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x1)))
n_y1 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y1)))
n_x2 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x2)))
n_y2 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y2)))
if n_x1 == 1 and n_x1 == n_x2:
n_x2 += 1
if n_y1 == 1 and n_y2 == n_y1:
n_y2 += 1
if n_x1 >= n_x2 or n_y1 >= n_y2:
print('error', name)
new_bndbox_list.append([n_x1, n_y1, n_x2, n_y2])
# 存储变化后的图片
image_aug = seq_det.augment_images([img])[0]
path = os.path.join(AUG_IMG_DIR,
str("%06d" % (len(files) + int(name[:-4]) + epoch * 250)) + '.jpg')
image_auged = bbs.draw_on_image(image_aug, thickness=0)
Image.fromarray(image_auged).save(path)
# 存储变化后的XML--此处可根据需要更改文件具体的名称
change_xml_list_annotation(XML_DIR, name[:-4], new_bndbox_list, AUG_XML_DIR,
len(files) + int(name[:-4]) + epoch * 250)
print(str("%06d" % (len(files) + int(name[:-4]) + epoch * 250)) + '.jpg')
new_bndbox_list = []
输入数据为两个文件夹一个是需要增强的影像数据(JPEGImages),一个是对应的xml文件(Annotations)。注意:影像文件名需和xml文件名相对应!
IMG_DIR = "../create-pascal-voc-dataset/examples/VOC2007/JPEGImages"
XML_DIR = "../create-pascal-voc-dataset/examples/VOC2007/Annotations"
AUG_XML_DIR = "./Annotations" # 存储增强后的XML文件夹路径
try:
shutil.rmtree(AUG_XML_DIR)
except FileNotFoundError as e:
a = 1
mkdir(AUG_XML_DIR)
AUG_IMG_DIR = "./JPEGImages" # 存储增强后的影像文件夹路径
try:
shutil.rmtree(AUG_IMG_DIR)
except FileNotFoundError as e:
a = 1
mkdir(AUG_IMG_DIR)
AUGLOOP = 10 # 每张影像增强的数量
通过修改Sequential函数参数进行设置,具体设置参考imgaug使用文档
seq = iaa.Sequential([
iaa.Flipud(0.5), # v翻转
iaa.Fliplr(0.5), # 镜像
iaa.Multiply((1.2, 1.5)), # 改变明亮度
iaa.GaussianBlur(sigma=(0, 3.0)), # 高斯噪声
iaa.Affine(
translate_px={"x": 15, "y": 15},
scale=(0.8, 0.95),
rotate=(-30, 30)
) # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
])