Skip to content

Commit

Permalink
docs: fix #96
Browse files Browse the repository at this point in the history
  • Loading branch information
45gfg9 committed Oct 20, 2024
1 parent a8bae38 commit 4f98213
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions 习题参考答案/专题/4 线性空间的运算.tex
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ \section*{4 线性空间的运算}
\end{pmatrix}\]
$\beta_1,\beta_2,e_1,e_2$即是扩张后的基,因此$W$的补空间的一组基为$e_1,e_2$.
\end{enumerate}
\end{enumerate}
\end{enumerate}

\item \begin{enumerate}
\item 先将各向量用坐标表示:
Expand Down Expand Up @@ -226,14 +226,14 @@ \section*{4 线性空间的运算}
\begin{enumerate}
\item 根据定义可知$\tr$是线性的,有 $\tr(\lambda A+\mu B)=\lambda\tr(A)+\mu\tr(B)=0$,则$U$是封闭的,又$W$封闭是显然的,则 $U,W$$V$ 的子空间.

\item 对于$W$,基为$\{E\}$$\dim W=1$. 对于$u$,设$E_{ij}$$a_{ij}=1$,其余元素为0的$n$阶方阵. 则由于$u$是对称矩阵,在非对角线元素上,$u$的基包含$E_{12}+E_{21},E_{13}+E_{31},\ldots ,E_{(n-1)n}+E_{n(n-1)}$. 对于对角线元素 $a_{11}+\cdots +a_{nn}=0$. 方程解为
\item 对于$W$,基为$\{E\}$$\dim W=1$. 对于$U$,设$E_{ij}$$a_{ij}=1$,其余元素为0的$n$阶方阵. 则由于$U$中的矩阵均为对称矩阵,在非对角线元素上,$U$的基包含$E_{12}+E_{21},E_{13}+E_{31},\ldots ,E_{(n-1)n}+E_{n(n-1)}$. 对于对角线元素 $a_{11}+\cdots +a_{nn}=0$. 方程解为
\[\begin{pmatrix}a_{11}\\ \vdots\\ a_{nn} \end{pmatrix}=k_1\begin{pmatrix}1 \\ -1 \\ 0\\ \vdots \\0 \end{pmatrix}=k_2\begin{pmatrix}1 \\ 0 \\ -1\\ \vdots \\0 \end{pmatrix}+\cdots+k_{n-1}\begin{pmatrix}1 \\ 0 \\ 0\\ \vdots \\-1 \end{pmatrix}.\]
则还有$n-1$个基$E_{11}-E_{22},E_{11}-E_{33},\ldots ,E_{11}-E_{nn}$. 故 $\dim U=\dfrac{n^2-n}2+n-2=\dfrac{n^2+n-2}2$.
则还有$n-1$个基$E_{11}-E_{22},E_{11}-E_{33},\ldots ,E_{11}-E_{nn}$. 故 $\dim U=\dfrac{n^2-n}2+n-1=\dfrac{n^2+n-2}2$.

\item$V'=U+W$. 先证明直和,即$U\cap W=\{0\}$. 这是显然的,因为$\tr(\lambda E)=n\lambda$,仅当 $\lambda=0$$\lambda E\in U$$U\cap W=\{0\}$得证. 又$\dim U+\dim W=\dim V'=n=\dim V$,则$V=V'=U\oplus W$得证.
\end{enumerate}

\item 由前 $B$ 组第 8 题的证明可知 $W_0=(W_1\cap W_2)\cup\cdots\cup(W_s\cap W_0)$. 由于$W_1\cap W_2\cdots W_s\cap W_0$都是$W_0$的子空间,根据覆盖定理,必存在$i$,使得$W_0=W_i\cap W_0$,即 $W_0\subseteq W_i$ 得证.
\item 由前 B 组第 8 题的证明可知 $W_0=(W_1\cap W_2)\cup\cdots\cup(W_s\cap W_0)$. 由于$W_1\cap W_0, \ldots, W_s\cap W_0$都是$W_0$的子空间,根据覆盖定理,因为 $W_0$ 是有限维的,必存在$i$,使得$W_0=W_i\cap W_0$,即 $W_0\subseteq W_i$ 得证.
\end{enumerate}

\clearpage

0 comments on commit 4f98213

Please sign in to comment.