Pytorch implementation of our method AIVA (Submitted to MICCAI workshop).
- Install wandb using https://docs.wandb.ai/quickstart
- git clone https://github.com/yishayahu/AIVA.git
- cd AIVA
- pip3 install -r requirements.txt
- cd ..
- git clone https://github.com/deepmind/surface-distance.git
- pip install surface-distance/
- Download CC359 from: https://www.ccdataset.com/download
- Download MultiSiteMri (msm) from: https://liuquande.github.io/SAML/
- point paths to the downloaded directories at paths.py
- run
python3 -m dataset create_all_images_pickle
- the results will be visible at https://wandb.ai/
- source can be any number between 0 and 5.
python3 trainer.py --source {source} --target {source} --mode pretrain --gpu {device}
python3 trainer.py --source {source} --target {source} --mode pretrain --gpu {device} --msm
- the results will be visible at https://wandb.ai/
- source and be target can be any number between 0 and 5.
- source and target should not be the same
python3 trainer.py --source {source} --target {target} --mode clustering_finetune --gpu {device}
- target can be any number between 0 and 5.
python3 trainer.py --target {target} --mode clustering_finetune --gpu {device} --msm