Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

typo in function name #2

Merged
merged 6 commits into from
Oct 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# app/Dockerfile

FROM python:3.11.4

WORKDIR /healthcheckapp

RUN apt-get update && apt-get install -y \
build-essential \
curl \
software-properties-common \
git \
gdebi-core \
&& rm -rf /var/lib/apt/lists/*

# remove -k to allow ssl verification
RUN curl -k -L https://quarto.org/download/latest/quarto-linux-arm64.deb -o /tmp/quarto-linux-arm64.deb
RUN gdebi --non-interactive /tmp/quarto-linux-arm64.deb

# del this line to allow ssl verification on git
RUN git config --global http.sslVerify false

RUN git clone https://github.com/pegasystems/pega-datascientist-tools.git .

# pip3 install --no-cache-dir .[app], replace with this line to allow ssl verification on pip
RUN pip3 install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org --no-cache-dir .[app]

EXPOSE 8501

HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health

ENTRYPOINT ["streamlit", "run", "python/pdstools/app/Home.py", "--server.port=8501", "--server.address=0.0.0.0"]
2 changes: 1 addition & 1 deletion examples/articles/ADMExplained.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,7 @@
" model.group_by(\"ModelID\")\n",
" .agg(\n",
" number_of_predictors=pl.col(\"PredictorName\").n_unique(),\n",
" model_performance=cdh_utils.weighed_performance_polars() * 100,\n",
" model_performance=cdh_utils.weighted_performance_polars() * 100,\n",
" response_count=pl.sum(\"ResponseCount\"),\n",
" )\n",
" .collect()\n",
Expand Down
26 changes: 13 additions & 13 deletions python/pdstools/adm/ADMDatamart.py
Original file line number Diff line number Diff line change
Expand Up @@ -970,19 +970,19 @@ def model_summary(
.sum()
.alias("Count_without_responses"),
(
cdh_utils.weighed_performance_polars().alias(
"Performance_weighted"
)
cdh_utils.weighted_performance_polars()
.alias("Performance_weighted")
.fill_nan(0.5)
),
cdh_utils.weighed_average_polars(
"SuccessRate", "ResponseCount"
).alias("SuccessRate_weighted"),
cdh_utils.weighted_average_polars("SuccessRate", "ResponseCount")
.fill_nan(0.0)
.alias("SuccessRate_weighted"),
],
)
.with_columns(
(pl.col("Count_without_responses") / pl.col(f"{by}_count")).alias(
"Percentage_without_responses"
)
(pl.col("Count_without_responses") / pl.col(f"{by}_count"))
.alias("Percentage_without_responses")
.fill_nan(0.0)
)
)

Expand Down Expand Up @@ -1029,16 +1029,16 @@ def pivot_df(
df.unique(subset=[by], keep="first")
.group_by(by)
.agg(
cdh_utils.weighed_average_polars("PerformanceBin", "ResponseCount")
cdh_utils.weighted_average_polars("PerformanceBin", "ResponseCount")
)
.sort("PerformanceBin", descending=True)
.head(top_n)
.select(by)
)
df = top_n_xaxis.join(df, on=by, how="left")
df = top_n_xaxis.join(df, on=by, how="left")
if by not in ["ModelID", "Name"]:
df = df.group_by([by, "PredictorName"]).agg(
cdh_utils.weighed_average_polars("PerformanceBin", "ResponseCount")
cdh_utils.weighted_average_polars("PerformanceBin", "ResponseCount")
)
df = (
df.collect()
Expand Down Expand Up @@ -1430,7 +1430,7 @@ def exportTables(self, file: Path = "Tables.xlsx"):
from xlsxwriter import Workbook

tabs = {tab: getattr(self, tab) for tab in self.ApplicableTables}
with Workbook(file) as wb:
with Workbook(file, {"nan_inf_to_errors": True}) as wb:
for tab, data in tabs.items():
data = data.with_columns(
pl.col(pl.List(pl.Categorical), pl.List(pl.Utf8))
Expand Down
18 changes: 10 additions & 8 deletions python/pdstools/plots/plot_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
import polars as pl
from .plots_plotly import ADMVisualisations as plotly
from ..utils.cdh_utils import (
weighed_performance_polars,
weighed_average_polars,
weighted_performance_polars,
weighted_average_polars,
)
from ..utils.errors import NotApplicableError
from ..utils.types import any_frame
Expand Down Expand Up @@ -116,7 +116,7 @@ def top_n(
if facets:
df = df.join(
df.group_by(facets + ["PredictorName"])
.agg(weighed_average_polars(to_plot, "ResponseCountBin"))
.agg(weighted_average_polars(to_plot, "ResponseCountBin"))
.filter(pl.col(to_plot).is_not_nan())
.group_by(*facets)
.agg(
Expand All @@ -131,7 +131,7 @@ def top_n(
else:
df = df.join(
df.group_by("PredictorName")
.agg(weighed_average_polars(to_plot, "ResponseCountBin"))
.agg(weighted_average_polars(to_plot, "ResponseCountBin"))
.filter(pl.col(to_plot).is_not_nan())
.sort(to_plot, descending=True)
.head(top_n)
Expand Down Expand Up @@ -484,10 +484,10 @@ def plotOverTime(
df.group_by_dynamic("SnapshotTime", every=every, by=group_by)
.agg(
[
weighed_average_polars("SuccessRate", "ResponseCount").alias(
weighted_average_polars("SuccessRate", "ResponseCount").alias(
"SuccessRate"
),
weighed_performance_polars().alias("weighted_performance"),
weighted_performance_polars().alias("weighted_performance"),
]
)
.with_columns(pl.col("weighted_performance") * 100)
Expand Down Expand Up @@ -963,7 +963,7 @@ def plotPredictorCategoryPerformance(
df = (
df.group_by(facets + ["ModelID", "PredictorCategory"])
.agg(
weighed_average_polars("PerformanceBin", "ResponseCountBin").alias(
weighted_average_polars("PerformanceBin", "ResponseCountBin").alias(
"PerformanceBin"
)
)
Expand Down Expand Up @@ -1062,7 +1062,9 @@ def plotPredictorContribution(
.with_columns((pl.col("PerformanceBin") - 0.5) * 2)
.group_by(by, "PredictorCategory")
.agg(
Performance=weighed_average_polars("PerformanceBin", "BinResponseCount")
Performance=weighted_average_polars(
"PerformanceBin", "BinResponseCount"
)
)
.with_columns(
Contribution=(
Expand Down
8 changes: 4 additions & 4 deletions python/pdstools/utils/cdh_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -556,7 +556,7 @@ def toPRPCDateTime(dt: datetime.datetime) -> str:
return dt.strftime("%Y%m%dT%H%M%S.%f")[:-3] + dt.strftime(" GMT%z")


def weighed_average_polars(
def weighted_average_polars(
vals: Union[str, pl.Expr], weights: Union[str, pl.Expr]
) -> pl.Expr:
if isinstance(vals, str):
Expand All @@ -566,9 +566,9 @@ def weighed_average_polars(
return ((vals * weights).sum()) / weights.sum()


def weighed_performance_polars() -> pl.Expr:
def weighted_performance_polars() -> pl.Expr:
"""Polars function to return a weighted performance"""
return weighed_average_polars("Performance", "ResponseCount")
return weighted_average_polars("Performance", "ResponseCount")


def zRatio(
Expand Down Expand Up @@ -632,7 +632,7 @@ def LogOdds(


def featureImportance(over=["PredictorName", "ModelID"]):
varImp = weighed_average_polars(
varImp = weighted_average_polars(
LogOdds(
pl.col("BinPositives"), pl.col("BinResponseCount") - pl.col("BinPositives")
),
Expand Down
12 changes: 7 additions & 5 deletions python/tests/test_cdh_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,9 @@ def test_toPRPCDateTime():
== "20180316T134127.847 GMT-0456"
)
assert (
cdh_utils.toPRPCDateTime(datetime.datetime(2018, 3, 16, 13, 41, 27, 847000))[:-3]
cdh_utils.toPRPCDateTime(datetime.datetime(2018, 3, 16, 13, 41, 27, 847000))[
:-3
]
== "20180316T134127.847 GMT+0000"[:-3]
)

Expand All @@ -149,7 +151,7 @@ def test_weighted_average_polars():
output = (
input.group_by("Channel")
.agg(
cdh_utils.weighed_average_polars("SuccessRate", "ResponseCount").alias(
cdh_utils.weighted_average_polars("SuccessRate", "ResponseCount").alias(
"SuccessRate_weighted"
),
)
Expand All @@ -165,7 +167,7 @@ def test_weighted_average_polars():
output = (
input.filter(pl.col("Channel") == "SMS")
.with_columns(
cdh_utils.weighed_average_polars(
cdh_utils.weighted_average_polars(
vals="SuccessRate", weights="ResponseCount"
).alias("weighted_average")
)
Expand All @@ -184,7 +186,7 @@ def test_weighted_average_polars():
assert output.frame_equal(expected_output)


def test_weighed_performance_polars():
def test_weighted_performance_polars():
input = pl.DataFrame(
{
"Performance": [0.5, 0.8, 0.75, 0.5], # 0.6, 0.6
Expand All @@ -195,7 +197,7 @@ def test_weighed_performance_polars():

output = (
input.group_by("Channel")
.agg(cdh_utils.weighed_performance_polars())
.agg(cdh_utils.weighted_performance_polars())
.sort("Channel")
)

Expand Down
Loading