This repository supports YuzuAI's Rakuda leaderboard of Japanese LLMs, which is a Japanese-focused version of LMSYS' LLM Judge.
Rakuda follows the same API as LLM Judge. First start with a question list you wish to compare the models on. These questions can be multi-turn. The default Rakuda question list is jrank/data/rakuda_v2/questions.jsonl
(HF).
Then generate model answers to these questions using jrank/gen_local_model_answer.py
:
python3 gen_local_model_answer.py --bench_name rakuda_v2 --model-path line-corporation/japanese-large-lm-1.7b-instruction-sft --model-id line-1.7b --conv_template ./templates/line.json
For API models, use gen_api_answer.py
instead.
After generating model answers, generate judgements of these answers using gen_judgement.py
.
python gen_judgment.py --bench_name rakuda_v2 --model-list chatntq-7b-jpntuned claude-2 gpt-3.5-turbo-0301-20230614 gpt-4-20230713 elyza-7b-fast-instruct elyza-7b-instruct jslm7b-instruct-alpha line-3.6b-sft rinna-3.6b-ppo rinna-3.6b-sft rwkv-world-jp-v1 stablebeluga2 weblab-10b-instruction-sft super-trin --parallel 2 --mode pairwise-n --judge-model claude-2 --n 2000
The mode option determines what kind of judgements are performed. The default for rakuda is pairwise-n
, in which model answers are compared pairwise until n
judgements have been reached.
Finally, fit a Bradley-Terry model to these judgements to create a model ranking.
python make_ranking.py --bench-name rakuda_v2 --judge-model claude-2 --mode pairwise --compute mle --make-charts --bootstrap-n 500 --plot-skip-list rinna-3.6b-sft super-trin elyza-7b-instruct
In order to ease the use of Rakuda, we have created a new method to generate the model ranking result.
- Create a new
config.json
in jrank folder - Copy
config.json.example
content toconfig.json
- Modify the content as you see fit; if
local_models
orapi_models
list is empty, then that part will be skipped - Start your local environment
pip install -r requirements.txt
*cd jrank
- run
python3 streamline.py
it will run following the config file and generate a result file
- if encounter
from openai import OpenAI
error, be sure to upgrade openai package
pip install openai --upgrade
More updates will be coming soon.
Generate answers with local models.
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path EleutherAI/pythia-70m --model-id pythia-70m --conv_template ./templates/yuzulm.json
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path line-corporation/japanese-large-lm-1.7b-instruction-sft --model-id line-1.7b --conv_template ./templates/line.json
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path stabilityai/japanese-stablelm-instruct-alpha-7b-v2 --model-id stablelm-alpha-7b-v2 --conv_template ./templates/japanese-stablelm.json --top_p 0.95 --temperature 1
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path stabilityai/japanese-stablelm-instruct-gamma-7b --model-id stablelm-gamma-7b --conv_template ./templates/japanese-stablelm.json --repetition_penalty 1.05 --max_new_tokens 512 --top_p 0.95
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path rinna/youri-7b-chat --model-id youri-7b-chat --conv_template ./templates/youri-chat.json --repetition_penalty 1.05 --num_beams 5
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path rinna/youri-7b-instruction --model-id youri-7b-instruction --conv_template ./templates/youri-instruction.json --repetition_penalty 1.05
python3 gen_model_answer.py --bench_name rakuda_v2 --model-path llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0 --model-id llm-jp-13b-instruct --conv_template ./templates/llm-jp-instruct.json --repetition_penalty 1.05
Generate judgement result.
Usage:
python gen_judgment.py --model-list [LIST-OF-MODEL-ID] --parallel [num-concurrent-api-call] --mode [single|pairwise-baseline|pairwise-all|pairwise-n] --judge-model [gpt-4|gpt-3.5-turbo|claude-2] --n ["all"|int]
python gen_judgment.py --model-list [LIST-OF-MODEL-ID] --parallel [num-concurrent-api-call] --mode [single|pairwise-baseline|pairwise-all|pairwise-n] --judge-model [gpt-4|gpt-3.5-turbo|claude-2] --n ["all"|int]
python gen_judgment.py --bench-name rakuda_v2_test --model-list claude-2 gpt-3.5-turbo line-1.7b --parallel 1 --mode pairwise-n --judge-model claude-2 --n 2
python gen_judgment.py --bench-name rakuda_v2 --model-list chatntq-7b-jpntuned claude-2 gpt-3.5-turbo-0301-20230614 gpt-4-20230713 elyza-7b-fast-instruct elyza-7b-instruct jslm7b-instruct-alpha line-3.6b-sft rinna-3.6b-ppo rinna-3.6b-sft rwkv-world-jp-v1 stablebeluga2 weblab-10b-instruction-sft super-trin --parallel 2 --mode pairwise-n --judge-model claude-2 --n 2000
python gen_judgment.py --bench-name rakuda_v2 --model-list chatntq-7b-jpntuned claude-2 gpt-3.5-turbo-0301-20230614 gpt-4-20230713 elyza-7b-fast-instruct elyza-7b-instruct jslm7b-instruct-alpha line-3.6b-sft rinna-3.6b-ppo rinna-3.6b-sft rwkv-world-jp-v1 stablebeluga2 weblab-10b-instruction-sft super-trin --parallel 2 --mode pairwise-n --judge-model gpt-4 --n 1400