-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels_v2.py
562 lines (506 loc) · 22 KB
/
models_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
from argparse import Namespace
import argparse
from collections import OrderedDict
import random
from typing import List
import torch
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
import os
os.environ['RWKV_JIT_ON'] = '0'
os.environ['RWKV_T_MAX'] = '1024'
os.environ['RWKV_FLOAT_MODE'] = 'bf16'
os.environ['RWKV_HEAD_SIZE_A'] = '64'
os.environ["RWKV_MY_TESTING"]='x060'
os.environ['RWKV_CTXLEN'] = '1024'
os.environ['RWKV_CTXLEN'] = '1024'
from src.model import RWKV, Block, RWKV_Tmix_x060, RWKV_CMix_x060,RWKV_TimeMix_RWKV5,RWKV_ChannelMix
from src.model_ext import RwkvForSequenceEmbedding
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
import pytorch_lightning as pl
import copy
import einops
import open_clip
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
#################################################################################
# Core DiRwkv Model #
#################################################################################
class DiRWKVBlock(nn.Module):
"""
A DiRwkv block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, args,layer_id,skip=False, **block_kwargs):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(hidden_size)
if 'x060' in os.environ["RWKV_MY_TESTING"]:
self.att = RWKV_Tmix_x060(args, layer_id)
else:
self.att = RWKV_TimeMix_RWKV5(args, layer_id)
if 'x060' in os.environ["RWKV_MY_TESTING"]:
self.ffn = RWKV_CMix_x060(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
self.ln2 = nn.LayerNorm(hidden_size)
#with original RWKVBlock to enable the residual connection and drop path
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
self.tiny_ln = nn.LayerNorm(args.n_embd)
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
if args.dropout > 0:
self.drop0 = nn.Dropout(p = args.dropout)
self.drop1 = nn.Dropout(p = args.dropout)
self.skip_linear = nn.Linear(args.n_embd*2, args.n_embd) if skip else None
"""
Remove the conditional input because we concatenate the timestep and conditional embeddings into the x input.
"""
def forward(self, x, x_emb = None,skip=None):
args = self.args
B, T, C = x.size()
if self.skip_linear:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
if self.args.dropout == 0:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
else:
x = self.drop0(x + self.att(self.ln1(x)))
x = self.drop1(x + self.ffn(self.ln2(x)))
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
xx = self.tiny_ln(x)
q = self.tiny_q(xx)[:, :T, :]
k = self.tiny_k(xx)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
x = x + c @ self.tiny_v(x_emb)
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels, condition=False):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
if condition == True:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c=None):
if c is not None:
c = self.adaLN_modulation(c).squeeze(1)
shift, scale = c.chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
else:
x = self.norm_final(x)
x = self.linear(x)
return x
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class DiRWKV(pl.LightningModule):
"""
Diffusion model with a Rwkv backbone.
"""
def __init__(
self,
args = None,
text_encoder = None,
deepspeed_offload = False,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
learn_sigma=True,
class_dropout_prob=0.1,
use_pos_emb=False,
mlp_time_embed=True,
):
super().__init__()
self.args = args
self.deepspeed_offload = deepspeed_offload
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.text_encoder = text_encoder
self.text_embedder = nn.Linear(text_encoder.token_embedding.weight.shape[1], args.n_embd) if text_encoder is not None else None
self.null_embeddings = torch.nn.Parameter(torch.randn(args.n_embd))
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
#replace the DiR's time embed to DiS's time embed
self.time_embed = nn.Sequential(
nn.Linear(args.n_embd, 4 * args.n_embd),
nn.SiLU(),
nn.Linear(4 * args.n_embd, args.n_embd),
) if mlp_time_embed else nn.Identity()
if self.text_encoder is not None:
self.extras = 2
else:
self.extras = 1
self.class_dropout_prob = class_dropout_prob
num_patches = self.x_embedder.num_patches
if use_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches , hidden_size))
else:
self.pos_embed = None
#in,mid,out blocks to suppor the skip connection
self.in_blocks = nn.ModuleList([
DiRWKVBlock(hidden_size,args,layer_id, skip=False) for layer_id in range(depth//2)
])
self.mid_block = DiRWKVBlock(hidden_size,args,depth//2, skip=False)
self.out_blocks = nn.ModuleList([
DiRWKVBlock(hidden_size,args,i + depth // 2 + 1, skip=False) for i in range(depth//2)
])
# self.blocks = nn.ModuleList([
# DiRWKVBlock(hidden_size,args,layer_id, mlp_ratio=mlp_ratio) for layer_id in range(depth)
# ])
if self.text_encoder is not None :
self.final_layer = FinalLayer(args.n_embd, patch_size, self.out_channels, condition=True)
else:
self.final_layer = FinalLayer(args.n_embd, patch_size, self.out_channels)
self.initialize_weights()
def convert_bfloat16(self):
#only blocks are bfloat16
for i in range(len(self.in_blocks)):
self.in_blocks[i].att = self.in_blocks[i].att.bfloat16()
self.in_blocks[i].ffn = self.in_blocks[i].ffn.bfloat16()
for i in range(len(self.out_blocks)):
self.out_blocks[i].att = self.out_blocks[i].att.bfloat16()
self.out_blocks[i].ffn = self.out_blocks[i].ffn.bfloat16()
self.mid_block.att = self.mid_block.att.bfloat16()
self.mid_block.ffn = self.mid_block.ffn.bfloat16()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
def unpatchify(self, x, channels=3):
patch_size = int((x.shape[2] // channels) ** 0.5)
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
return x
def forward(self, x, t, y):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of labels
"""
args = self.args
if self.pos_embed is None:
x = self.x_embedder(x.bfloat16())
else:
x = self.x_embedder(x.bfloat16()) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t_emb = self.time_embed(timestep_embedding(t, args.n_embd).bfloat16()) # (N, D)
t_emb = t_emb.unsqueeze(dim=1)
x = torch.cat([t_emb,x],dim=1)
if y is not None:
if self.training and self.class_dropout_prob > 0:
#randomly set y to [1]*D
batch = y.shape[0]
for i in range(batch):
if random.random() < self.class_dropout_prob:
y[i] = torch.tensor([args.eot]+[0]*(args.len-1))
with torch.no_grad():
y_emb = self.text_encoder.encode_text(y)
#y is [N] integer labels tensor
y_emb = self.text_embedder(y_emb) # (N, D)
y_emb = y_emb.unsqueeze(dim=1)
x = torch.cat([y_emb,x],dim=1)
skips = []
x_emb = x
for block in self.in_blocks:
if args.tiny_att_dim > 0:
x = block(x,x_emb)
else:
x = block(x)
skips.append(x)
if args.tiny_att_dim > 0:
x = self.mid_block(x,x_emb)
else:
x = self.mid_block(x)
for block in self.out_blocks:
if args.tiny_att_dim > 0:
x = block(x,x_emb,skips.pop())
else:
x = block(x,skips.pop())
if y is not None:
x = self.final_layer(x, c=t_emb+y_emb) # (N, T, patch_size ** 2 * out_channels)
else:
x = self.final_layer(x) # (N, T, patch_size ** 2 * out_channels)
x = x[:, self.extras:, :]
x = self.unpatchify(x,self.out_channels) # (N, out_channels, H, W)
return x
def forward_with_cfg(self, x, t, y, cfg_scale):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
# eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
def set_diffusion(self,diffusion):
self.diffusion = diffusion
def set_vae(self, vae):
self.vae = vae
self.vae.eval()
def training_step(self, batch, batch_idx) :
x, y = batch
self.vae.eval()
with torch.no_grad():
# Map input images to latent space + normalize latents:
x = self.vae.encode(x).latent_dist.sample().mul_(0.18215)
t = torch.randint(0, self.diffusion.num_timesteps, (x.shape[0],)).to(x.device)
model_kwargs = dict(y=y)
loss_dict = self.diffusion.training_losses(self, x, t, model_kwargs)
loss = loss_dict["loss"].mean()
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
args = self.args
lr_decay = set()
lr_1x = set()
lr_2x = set()
lr_3x = set()
all_keys = set()
#frozen vae
for n, p in self.vae.named_parameters():
p.requires_grad_ = False
for n, p in self.named_parameters():
if ('vae' in n) or ('diffusion' in n) or not p.requires_grad_:
#disable the require_grad for the parameter
p.requires_grad_ = False
continue
all_keys.add(n)
if (("_w1" in n) or ("_w2" in n)) and (args.layerwise_lr > 0):
lr_1x.add(n)
elif (("time_mix" in n) or ("time_maa" in n)) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif (("time_decay" in n) or ("time_daaaa" in n)) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_3x.add(n)
else:
lr_2x.add(n)
elif ("time_faaaa" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_first" in n) and (args.layerwise_lr > 0):
lr_3x.add(n)
elif (len(p.squeeze().shape) >= 2) and (args.weight_decay > 0):
lr_decay.add(n)
else:
lr_1x.add(n)
lr_decay = sorted(list(lr_decay))
lr_1x = sorted(list(lr_1x))
lr_2x = sorted(list(lr_2x))
lr_3x = sorted(list(lr_3x))
print('all', all_keys)
# print('decay', lr_decay)
# print('1x', lr_1x)
# print('2x', lr_2x)
# print('3x', lr_3x)
param_dict = {n: p for n, p in self.named_parameters()}
if args.layerwise_lr > 0:
if args.my_pile_stage == 2:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
]
else:
optim_groups = [{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0}]
if args.weight_decay > 0:
optim_groups += [{"params": [param_dict[n] for n in lr_decay], "weight_decay": args.weight_decay, "my_lr_scale": 1.0}]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=True, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=True, amsgrad=False)
else:
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
#################################################################################
# DiT Configs #
#################################################################################
rwkvArgs = argparse.Namespace()
rwkvArgs.my_pos_emb = 0
rwkvArgs.pre_ffn = 0
rwkvArgs.head_size_divisor = 8
rwkvArgs.ctx_len = 1024
rwkvArgs.dropout = 0.05
rwkvArgs.head_qk = 0
rwkvArgs.grad_cp = 0
rwkvArgs.save_per_batches = 10000
rwkvArgs.my_exit = 3
n_embd = 1024
dim_att = 1024
n_head = 16
dim_ffn = 4096
n_layer = 24
version = '6'
head_size_a = 64
rwkvArgs.n_embd = n_embd
rwkvArgs.dim_att = dim_att
rwkvArgs.dim_ffn = dim_ffn
rwkvArgs.n_layer = n_layer
rwkvArgs.version = version
rwkvArgs.head_size_a = head_size_a
rwkvArgs.weight_decay = 0.001
rwkvArgs.lr_init = 3e-4
rwkvArgs.lr_final = 1e-5
rwkvArgs.beta1 = 0.9
rwkvArgs.beta2 = 0.99
rwkvArgs.betas = (0.9, 0.99)
rwkvArgs.layerwise_lr = 1
rwkvArgs.my_pile_stage = 1
rwkvArgs.adam_eps = 1e-8
rwkvArgs.warmup_steps = 50
rwkvArgs.tiny_att_dim = 1024
rwkvArgs.eot = 49407
rwkvArgs.len = 77
# text encoder with open_clip
text_encoder, _, _ = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
print(text_encoder)
def DiRwkv_XL_2(**kwargs):
#setup rwkv args
args = copy.copy(rwkvArgs)
args.n_layer = 28
args.tiny_att_layer = args.n_layer
args.n_embd = 1536
args.dim_ffn = 6144
args.dim_att = 1536
return DiRWKV(args,text_encoder=text_encoder,depth=args.n_layer, hidden_size=1536, patch_size=2, **kwargs)
DiRwkv_models = {
'DiRwkv_XL_2': DiRwkv_XL_2
}
from tokenizer.rwkv_tokenizer import TRIE_TOKENIZER
def tokenize_and_pad(input_strs :List[str],tokenizer :TRIE_TOKENIZER, max_len:int = 255,pad_id = 0,eos_id = 1):
current_max = 0
input_ids = []
for input_str in input_strs:
tokens = tokenizer.encode(input_str)
if len(tokens) > max_len:
tokens = tokens[:max_len]
tokens.append(eos_id)
if len(tokens) > current_max:
current_max = len(tokens)
input_ids.append(tokens)
input_ids = [x + [pad_id] * (current_max - len(x)) for x in input_ids]
return input_ids
if __name__ == '__main__':
print('test DiRWKV model')
tokenizer = open_clip.get_tokenizer('ViT-B-32')
# 定义要获取嵌入的文本
texts = ["这是一个测试文本","a bike on the road with a person riding it"]
# 使用tokenizer处理文本
texts = tokenizer(texts)
print(texts)
print(texts.shape)
null_token = torch.tensor([tokenizer.eot_token_id]+[0]*(texts.shape[1]-1))
print(null_token)
texts = torch.cat([texts, null_token.unsqueeze(0)], dim=0)
image_size = 256
input_size = image_size // 8
model = DiRwkv_models['DiRwkv_XL_2'](input_size=input_size)
model.convert_bfloat16()
print(model)
N = 3
C = 4
H = input_size
W = input_size
model = model.to('cuda')
x = torch.randn(N, C, H, W).to('cuda')
y = texts.to('cuda')
t = torch.randint(0, 1000, (x.shape[0],)).to(x.device)
print(t)
from torch.amp import autocast
with autocast(device_type='cuda',dtype=torch.bfloat16):
out = model(x, t, y)
print(out.shape)
print(out)