Skip to content

yynil/Di-R

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Di-R

Diffusion with RWKV

Replace Transformer with RWKV-v6 block

This project is to replace the transformer in the original Di-R with RWKV-v6 block.

RWKV-v6 block

RWKV-v6 block is a RNN-like block with a large number of parameters. It can be used to replace the transformer in the original Di-R.

Model architecture

The original DiT model architecture is as follows:

DiT

We just replace the DiT Block to DiR Block.

alt text

We also use a 12 layers RWKV model to encode the input tokens. The whole model architecture is as follows: DiR

Training

The training depends on Deepspeed with Zero-2 with CPU offload strategy. The following is the training arguments:

Argument Data type Defual value Description
--data-path str '/media/yueyulin/TOUROS/images/laion400m_zip' data directory, organized as zip files
--results-dir str 'results' The directory to save result models
--model str 'DiRwkv_XL_2' Model names, values are DiRwkv_models.keys()
--image-size int 256 Image size [256, 512]
--epochs int 1400 Training epoches
--global-batch-size int 8 This is actually per GPU batch size
--global-seed int 0 Seed
--vae str 'ema' VAE Type ['ema', 'mse']
--num-workers int 4 Num of data loader's workers
--is-zip bool True If data is zip files
--is-pos-emb bool False If X is added with pos embeddings
--devices int 1 Number of gpus
--num_nodes int 1 Number of nodes
--log_every_n_steps int 10000 Number of steps to save model

Enviornments

Conda environments:

conda create -n di_r python=3.10
conda activate di_r
conda install cuda -c nvidia/label/cuda-12.1.0

Cuda has to be 12.1 for now because deepspeed is currently compiled by CUDA 12.1.

Python environments:

accelerate==0.27.2
aiohttp==3.9.3
aiosignal==1.3.1
annotated-types==0.6.0
async-timeout==4.0.3
attrs==21.4.0
cbor2==5.6.2
certifi==2024.2.2
charset-normalizer==3.3.2
deepspeed==0.14.0
diffuser==0.0.1
diffusers==0.26.3
diffusion==6.10.2
diffusion-core==0.0.65
filelock==3.13.1
frozenlist==1.4.1
fsspec==2024.2.0
hjson==3.1.0
huggingface-hub==0.21.4
idna==3.6
importlib_metadata==7.0.2
Jinja2==3.1.3
joblib==1.3.2
lightning==2.2.1
lightning-utilities==0.10.1
MarkupSafe==2.1.5
maturin==1.5.0
mpmath==1.3.0
multidict==6.0.5
networkx==3.2.1
ninja==1.11.1.1
numpy==1.26.4
nvidia-cublas-cu12==12.1.3.1
nvidia-cuda-cupti-cu12==12.1.105
nvidia-cuda-nvrtc-cu12==12.1.105
nvidia-cuda-runtime-cu12==12.1.105
nvidia-cudnn-cu12==8.9.2.26
nvidia-cufft-cu12==11.0.2.54
nvidia-curand-cu12==10.3.2.106
nvidia-cusolver-cu12==11.4.5.107
nvidia-cusparse-cu12==12.1.0.106
nvidia-nccl-cu12==2.19.3
nvidia-nvjitlink-cu12==12.4.99
nvidia-nvtx-cu12==12.1.105
packaging==24.0
pandas==2.2.1
pillow==10.2.0
psutil==5.9.8
py-cpuinfo==9.0.0
pydantic==2.6.3
pydantic_core==2.16.3
pynvml==11.5.0
python-dateutil==2.9.0.post0
pytorch-lightning==2.2.1
pytz==2024.1
PyYAML==6.0.1
regex==2023.12.25
requests==2.31.0
safetensors==0.4.2
scikit-learn==1.4.1.post1
scipy==1.12.0
sentence-transformers==2.5.1
six==1.16.0
stringcase==1.2.0
structlog==21.5.0
sympy==1.12
threadpoolctl==3.3.0
timm==0.9.16
tokenizers==0.15.2
toml==0.10.2
tomli==2.0.1
torch==2.2.1
torchmetrics==1.3.1
torchvision==0.17.1
tqdm==4.66.2
transformers==4.38.2
triton==2.2.0
typing_extensions==4.10.0
tzdata==2024.1
urllib3==2.2.1
wandb==0.16.4
yarl==1.9.4
zipp==3.17.0

Install customized zip reader:

cd data/rs/zip_fast_reader
maturin develop

Download data and extract data

LAION data

The data is downloaded from Baidu Cloud. After extracting the data, we assume the data is extracted in ZIP_ROOT. The data structure looks like:

The baidu cloud link is :

链接: https://pan.baidu.com/s/1VkZ_3zjCW06X0MNIvsWtsQ?pwd=xypd 提取码: xypd --来自百度网盘超级会员v6的分享

ZIP_ROOT_
    |-- batch0/
    |-- batch1/
    |-- batch2/
    |-- ...
    |-- batch18/
    |-- meta.txt

meta.txt contains all the information which line include zip_file's relative path, the image file name in zip file and captioned txt file in zip file. We use a customized zip dataset to read data directly in zip file to save disk io sacrificed with CPU usage. Furthermore we can split the meta.txt into slices to enable multiple nodes data distribution.

ImageNet data

Download the ImageNet 2012 data from ImageNet website. The data structure looks like:

IMAGENET_ROOT/
    |-- n0144076/
    |-- n0144353/
    |-- ...
    |-- n0212304/

The script train_all_deepspeed_v1.py is used to train the class conditioned model with IMAGENET data.

Training script

According to the above data structure and the script arguments, the training script is as follows:

The following script is used to train the model with batch 24 and no pos embedding.

python train_all_deepspeed.py --results-dir $model_output_path --data-path $ZIP_ROOT --global-batch-size 24

The following script is used to train the model with batch 24 and pos embedding.

python train_all_deepspeed.py --results-dir $model_output_path --data-path $ZIP_ROOT --global-batch-size 24 --is-pos-emb

Since all of the images' resolution is 256x256, the maxium patches is 64, so we can enlarge the batch size to train the model.

Training with ImageNet plus skip connection and residual connection

Following the https://github.com/feizc/DiS , I add the skip connection and residual connection to the model. To train with ImageNet, I use the following script:

python train_all_deepspeed_v1.py --global-batch-size 20

In this version, both ema and model will be saved.

Training with open_clip text encoder puls skip connection and residual connection

Requirement: Install open_clip

pip install open_clip_torch

Train model using the following script:

python train_all_deepspeed_v2.py --results-dir $model_output_path --data-path $ZIP_ROOT --global-batch-size 24

Inference script

The sample.py is used to generate the sample images.

The arguments are as follows:

Argument Data type Default value Description
--model str 'DiRwkv_XL_2' Model types
--vae str 'ema' VAE ['ema', 'mse']
--image-size int 256 Image size [256, 512]
--cfg-scale float 7 Conditional factor
--num-sampling-steps int 250 Sampling steps
--seed int 0 Seed
--ckpt str '/media/yueyulin/KINGSTON/tmp/DiRwkv_XL_2/epoch_0_step_20000/model.pth' model ckpt path
--is-pos-emb bool False If pos-emb is enabled

TODO

  • Distributed training
  • Large image size support

About

Diffusion with RWKV

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published