The academic paper which describes ALBERT in detail and provides full results on a number of tasks can be found here: https://arxiv.org/abs/1909.11942.
This repository contains TensorFlow 2.x implementation for ALBERT.
We released both checkpoints and tf.hub modules as the pretrained models for fine-tuning. They are TF 2.x compatible and are converted from the ALBERT v2 checkpoints released in TF 1.x official ALBERT repository google-research/albert in order to keep consistent with ALBERT paper.
Our current released checkpoints are exactly the same as TF 1.x official ALBERT repository.
Pretrained checkpoints can be found in the following links:
Note: We implemented ALBERT using Keras functional-style networks in nlp/modeling. ALBERT V2 models compatible with TF 2.x checkpoints are:
ALBERT V2 Base
: 12-layer, 768-hidden, 12-heads, 12M parametersALBERT V2 Large
: 24-layer, 1024-hidden, 16-heads, 18M parametersALBERT V2 XLarge
: 24-layer, 2048-hidden, 32-heads, 60M parametersALBERT V2 XXLarge
: 12-layer, 4096-hidden, 64-heads, 235M parameters
We recommend to host checkpoints on Google Cloud storage buckets when you use Cloud GPU/TPU.
tf.train.Checkpoint
is used to manage model checkpoints in TF 2. To restore
weights from provided pre-trained checkpoints, you can use the following code:
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
Checkpoints featuring native serialized Keras models (i.e. model.load()/load_weights()) will be available soon.
Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the following links:
ALBERT V2 Base
: 12-layer, 768-hidden, 12-heads, 12M parametersALBERT V2 Large
: 24-layer, 1024-hidden, 16-heads, 18M parametersALBERT V2 XLarge
: 24-layer, 2048-hidden, 32-heads, 60M parametersALBERT V2 XXLarge
: 12-layer, 4096-hidden, 64-heads, 235M parameters
export PYTHONPATH="$PYTHONPATH:/path/to/models"
Install tf-nightly
to get latest updates:
pip install tf-nightly-gpu
With TPU, GPU support is not necessary. First, you need to create a tf-nightly
TPU with ctpu tool:
ctpu up -name <instance name> --tf-version=”nightly”
Second, you need to install TF 2 tf-nightly
on your VM:
pip install tf-nightly
Warning: More details TPU-specific set-up instructions and tutorial should come along with official TF 2.x release for TPU. Note that this repo is not officially supported by Google Cloud TPU team yet until TF 2.1 released.
Pre-train ALBERT using TF2.x will come soon. For now, please use ALBERT research repo to pretrain the model and convert the checkpoint to TF2.x compatible ones using tf2_albert_encoder_checkpoint_converter.py.
To prepare the fine-tuning data for final model training, use the
../data/create_finetuning_data.py
script.
Note that different from BERT models that use word piece tokenzer,
ALBERT models employ sentence piece tokenizer. So the FLAG tokenizer_impl has
to be set to 'sentence_piece'.
Resulting datasets in tf_record
format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in following sections:
- GLUE
Users can download the
GLUE data by running
this script
and unpack it to some directory $GLUE_DIR
.
export GLUE_DIR=~/glue
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
python ../data/create_finetuning_data.py \
--input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
--sp_model_file=${ALBERT_DIR}/30k-clean.model \
--train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
--eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
--fine_tuning_task_type=classification --max_seq_length=128 \
--classification_task_name=${TASK_NAME} \
--tokenizer_impl=sentence_piece
- SQUAD
The SQuAD website contains detailed information about the SQuAD datasets and evaluation.
The necessary files can be found here:
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export OUTPUT_DIR=gs://some_bucket/datasets
python ../data/create_finetuning_data.py \
--squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
--sp_model_file=${ALBERT_DIR}/30k-clean.model \
--train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
--fine_tuning_task_type=squad --max_seq_length=384 \
--tokenizer_impl=sentence_piece
- Cloud Storage
The unzipped pre-trained model files can also be found in the Google Cloud
Storage folder gs://cloud-tpu-checkpoints/albert/checkpoints
. For example:
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export MODEL_DIR=gs://some_bucket/my_output_dir
Currently, users are able to access to tf-nightly
TPUs and the following TPU
script should run with tf-nightly
.
- GPU -> TPU
Just add the following flags to run_classifier.py
or run_squad.py
:
--distribution_strategy=tpu
--tpu=grpc://${TPU_IP_ADDRESS}:8470
This example code fine-tunes albert_v2_base
on the Microsoft Research
Paraphrase Corpus (MRPC) corpus, which only contains 3,600 examples and can
fine-tune in a few minutes on most GPUs.
We use the albert_v2_base
as an example throughout the
workflow.
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${ALBERT_DIR}/albert_config.json \
--init_checkpoint=${ALBERT_DIR}/bert_model.ckpt \
--train_batch_size=4 \
--eval_batch_size=4 \
--steps_per_loop=1 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
Alternatively, instead of specifying init_checkpoint
, you can specify
hub_module_url
to employ a pretraind BERT hub module, e.g.,
--hub_module_url=https://tfhub.dev/tensorflow/albert_en_base/1
.
To use TPU, you only need to switch distribution strategy type to tpu
with TPU
information and use remote storage for model checkpoints.
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=$ALBERT_DIR/albert_config.json \
--init_checkpoint=$ALBERT_DIR/bert_model.ckpt \
--train_batch_size=32 \
--eval_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
The Stanford Question Answering Dataset (SQuAD) is a popular question answering benchmark dataset. See more in SQuAD website.
We use the albert_v2_base
as an example throughout the
workflow.
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--sp_model_file=${ALBERT_DIR}/30k-clean.model \
--bert_config_file=$ALBERT_DIR/albert_config.json \
--init_checkpoint=$ALBERT_DIR/bert_model.ckpt \
--train_batch_size=4 \
--predict_batch_size=4 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
Similarily, you can replace init_checkpoint
FLAGS with hub_module_url
to
specify a hub module path.
To use TPU, you need switch distribution strategy type to tpu
with TPU
information.
export ALBERT_DIR=gs://cloud-tpu-checkpoints/albert/checkpoints/albert_v2_base
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--sp_model_file=${ALBERT_DIR}/30k-clean.model \
--bert_config_file=$ALBERT_DIR/albert_config.json \
--init_checkpoint=$ALBERT_DIR/bert_model.ckpt \
--train_batch_size=32 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
The dev set predictions will be saved into a file called predictions.json in the model_dir:
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json