Skip to content

Latest commit

 

History

History
295 lines (220 loc) · 13.8 KB

README.md

File metadata and controls

295 lines (220 loc) · 13.8 KB

Python/module 模块

1. 概述

1.1 what

在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护。为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。

1.2 why

  1. 最大的好处是大大提高了代码的可维护性。
  2. 编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。
  3. 使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。点这里查看Python的所有内置函数。
  4. 你也许还想到,如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。举个例子,一个abc.py的文件就是一个名字叫abc的模块,一个xyz.py的文件就是一个名字叫xyz的模块。现在,假设我们的abc和xyz这两个模块名字与其他模块冲突了,于是我们可以通过包来组织模块,避免冲突。方法是选择一个顶层包名,比如mycompany,按照如下目录存放:Alt text引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。现在,abc.py模块的名字就变成了mycompany.abc,类似的,xyz.py的模块名变成了mycompany.xyz。 请注意,每一个包目录下面都会有一个__init__.py的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。init.py可以是空文件,也可以有Python代码,因为__init__.py本身就是一个模块,而它的模块名就是mycompany。 类似的,可以有多级目录,组成多级层次的包结构。比如如下的目录结构:Alt text文件www.py的模块名就是mycompany.web.www,两个文件utils.py的模块名分别是mycompany.utils和mycompany.web.utils。 mycompany.web也是一个模块,请指出该模块对应的.py文件。

2. 学习目标和学习方法

2.1 学习模块的基本原理

2.2 掌握模块的代码

3. 课程内容

3.1 使用模块

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。 我们以内建的sys模块为例,编写一个hello的模块:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

' a test module '

__author__ = 'Michael Liao'

import sys

def test():
    args = sys.argv
    if len(args)==1:
        print 'Hello, world!'
    elif len(args)==2:
        print 'Hello, %s!' % args[1]
    else:
        print 'Too many arguments!'

if __name__=='__main__':
    test()

第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;

第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;

第6行使用__author__变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;

以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。

后面开始就是真正的代码部分。

你可能注意到了,使用sys模块的第一步,就是导入该模块:

import sys

导入sys模块后,我们就有了变量sys指向该模块,利用sys这个变量,就可以访问sys模块的所有功能。

sys模块有一个argv变量,用list存储了命令行的所有参数。argv至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:

运行python hello.py获得的sys.argv就是['hello.py'];

运行python hello.py Michael获得的sys.argv就是['hello.py', 'Michael]。

最后,注意到这两行代码:

if __name__=='__main__':
    test()

当我们在命令行运行hello模块文件时,Python解释器把一个特殊变量__name__置为__main__,而如果在其他地方导入该hello模块时,if判断将失败,因此,这种if测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。

我们可以用命令行运行hello.py看看效果:

$ python hello.py
Hello, world!
$ python hello.py Michael
Hello, Michael!

如果启动Python交互环境,再导入hello模块:

$ python
Python 2.7.5 (default, Aug 25 2013, 00:04:04) 
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>>

导入时,没有打印Hello, word!,因为没有执行test()函数。

调用hello.test()时,才能打印出Hello, word!:

>>> hello.test()
Hello, world!

别名

导入模块时,还可以使用别名,这样,可以在运行时根据当前环境选择最合适的模块。比如Python标准库一般会提供StringIO和cStringIO两个库,这两个库的接口和功能是一样的,但是cStringIO是C写的,速度更快,所以,你会经常看到这样的写法:

try:
    import cStringIO as StringIO
except ImportError: # 导入失败会捕获到ImportError
    import StringIO

这样就可以优先导入cStringIO。如果有些平台不提供cStringIO,还可以降级使用StringIO。导入cStringIO时,用import ... as ...指定了别名StringIO,因此,后续代码引用StringIO即可正常工作。

还有类似simplejson这样的库,在Python 2.6之前是独立的第三方库,从2.6开始内置,所以,会有这样的写法:

try:
    import json # python >= 2.6
except ImportError:
    import simplejson as json # python <= 2.5

由于Python是动态语言,函数签名一致接口就一样,因此,无论导入哪个模块后续代码都能正常工作。


作用域

在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。

正常的函数和变量名是公开的(public),可以被直接引用,比如:abc,x123,PI等;

类似**xxx这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的authorname就是特殊变量,hello模块定义的文档注释也可以用特殊变量doc**访问,我们自己的变量一般不要用这种变量名;

类似**_xxx和__xxx**这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc,__abc等;

之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。

private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:

def _private_1(name):
    return 'Hello, %s' % name

def _private_2(name):
    return 'Hi, %s' % name

def greeting(name):
    if len(name) > 3:
        return _private_1(name)
    else:
        return _private_2(name)

我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。

3.2 第三方模块

安装第三方模块

在Python中,安装第三方模块,是通过setuptools这个工具完成的。Python有两个封装了setuptools的包管理工具:easy_install和pip。目前官方推荐使用pip。

如果你正在使用Mac或Linux,安装pip本身这个步骤就可以跳过了。

如果你正在使用Windows,请参考安装Python一节的内容,确保安装时勾选了pip和Add python.exe to Path。

在命令提示符窗口下尝试运行pip,如果Windows提示未找到命令,可以重新运行安装程序添加pip。

现在,让我们来安装一个第三方库——Python Imaging Library,这是Python下非常强大的处理图像的工具库。一般来说,第三方库都会在Python官方的pypi.python.org网站注册,要安装一个第三方库,必须先知道该库的名称,可以在官网或者pypi上搜索,比如Python Imaging Library的名称叫PIL,因此,安装Python Imaging Library的命令就是:

pip install PIL

耐心等待下载并安装后,就可以使用PIL了。

有了PIL,处理图片易如反掌。随便找个图片生成缩略图:

>>> import Image
>>> im = Image.open('test.png')
>>> print im.format, im.size, im.mode
PNG (400, 300) RGB
>>> im.thumbnail((200, 100))
>>> im.save('thumb.jpg', 'JPEG')

其他常用的第三方库还有MySQL的驱动:MySQL-python,用于科学计算的NumPy库:numpy,用于生成文本的模板工具Jinja2,等等。

模块搜索路径

当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:

>>> import mymodule
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ImportError: No module named mymodule

默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:

>>> import sys
>>> sys.path
['', '/Library/Python/2.7/site-packages/pycrypto-2.6.1-py2.7-macosx-10.9-intel.egg', '/Library/Python/2.7/site-packages/PIL-1.1.7-py2.7-macosx-10.9-intel.egg', ...]

如果我们要添加自己的搜索目录,有两种方法:

一是直接修改sys.path,添加要搜索的目录:

>>> import sys
>>> sys.path.append('/Users/michael/my_py_scripts')

这种方法是在运行时修改,运行结束后失效。

第二种方法是设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响

3.3 使用**future**

Python的每个新版本都会增加一些新的功能,或者对原来的功能作一些改动。有些改动是不兼容旧版本的,也就是在当前版本运行正常的代码,到下一个版本运行就可能不正常了。

从Python 2.7到Python 3.x就有不兼容的一些改动,比如2.x里的字符串用'xxx'表示str,Unicode字符串用u'xxx'表示unicode,而在3.x中,所有字符串都被视为unicode,因此,写u'xxx'和'xxx'是完全一致的,而在2.x中以'xxx'表示的str就必须写成b'xxx',以此表示“二进制字符串”。

要直接把代码升级到3.x是比较冒进的,因为有大量的改动需要测试。相反,可以在2.7版本中先在一部分代码中测试一些3.x的特性,如果没有问题,再移植到3.x不迟。

Python提供了**future**模块,把下一个新版本的特性导入到当前版本,于是我们就可以在当前版本中测试一些新版本的特性。举例说明如下:

为了适应Python 3.x的新的字符串的表示方法,在2.7版本的代码中,可以通过unicode_literals来使用Python 3.x的新的语法:

# still running on Python 2.7

from __future__ import unicode_literals

print '\'xxx\' is unicode?', isinstance('xxx', unicode)
print 'u\'xxx\' is unicode?', isinstance(u'xxx', unicode)
print '\'xxx\' is str?', isinstance('xxx', str)
print 'b\'xxx\' is str?', isinstance(b'xxx', str)

注意到上面的代码仍然在Python 2.7下运行,但结果显示去掉前缀u的'a string'仍是一个unicode,而加上前缀b的b'a string'才变成了str:

$ python task.py
'xxx' is unicode? True
u'xxx' is unicode? True
'xxx' is str? False
b'xxx' is str? True

类似的情况还有除法运算。在Python 2.x中,对于除法有两种情况,如果是整数相除,结果仍是整数,余数会被扔掉,这种除法叫“地板除”:

>>> 10 / 3
3

要做精确除法,必须把其中一个数变成浮点数:

>>> 10.0 / 3
3.3333333333333335

而在Python 3.x中,所有的除法都是精确除法,地板除用//表示:’

$ python3
Python 3.3.2 (default, Jan 22 2014, 09:54:40) 
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 10 / 3
3.3333333333333335
>>> 10 // 3
3

如果你想在Python 2.7的代码中直接使用Python 3.x的除法,可以通过__future__模块的division实现:

from __future__ import division

print '10 / 3 =', 10 / 3
print '10.0 / 3 =', 10.0 / 3
print '10 // 3 =', 10 // 3

结果如下:

10 / 3 = 3.33333333333
10.0 / 3 = 3.33333333333
10 // 3 = 3

小结

由于Python是由社区推动的开源并且免费的开发语言,不受商业公司控制,因此,Python的改进往往比较激进,不兼容的情况时有发生。Python为了确保你能顺利过渡到新版本,特别提供了__future__模块,让你在旧的版本中试验新版本的一些特性。

4. 课程作业

暂无