-
Preparing conda env
Assuming you have conda installed, let's prepare a conda env:
# We require python>=3.9 and cmake>=3.14 conda create -n habitat python=3.9 cmake=3.14.0 conda activate habitat
-
conda install habitat-sim
- To install habitat-sim with bullet physics
Note, for newer features added after the most recent release, you may need to install
conda install habitat-sim withbullet -c conda-forge -c aihabitat
aihabitat-nightly
. See Habitat-Sim's installation instructions for more details.
- To install habitat-sim with bullet physics
-
pip install habitat-lab stable version.
git clone --branch stable https://github.com/facebookresearch/habitat-lab.git cd habitat-lab pip install -e habitat-lab # install habitat_lab
Please notice that download the "habitat-lab" project under the path "$VLN_ROOT/dependencies/".
-
Install habitat-baselines.
The command above will install only core of Habitat-Lab. To include habitat_baselines along with all additional requirements, use the command below after installing habitat-lab:
pip install -e habitat-baselines # install habitat_baselines
-
Install pytorch (assuming cuda 11.3):
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
-
Install detectron2: Install the detectron2 based on:
https://github.com/facebookresearch/detectron2?tab=readme-ov-file
-
Add repository to python path:
export PYTHONPATH=$PYTHONPATH:$VLN_ROOT
Please use the datasets of HM3D-v0.2-val_split. You should download both Scenes datasets and the task datasets. Common task and episode datasets used with Habitat-Lab.
Download the image segmentation model [URL] to $VLN_ROOT/dependencies/mask_rcnn/
.'
python task_evaluation.py